REVIEW PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Sheep’s milk exerts a number of biological effects that influence metabolic reactions and disease resistance. Sheep’s milk contains the highest level of casein, whey protein and conjugated linoleic acid isomers (CLA), which stimulate the immune system, and have “anti-obesity”, “antidiabetic” and “anticancer” properties. Sheep’s milk is an excellent source of protein and group B vitamins, which ensure the proper functioning of the nervous system. Proline-rich polypeptide partially reverses neurodegenerative changes and has immunoregulatory and pro-cognitive properties. CLA isomers also reduce oxidative stress and mitochondrial dysfunction in the brain, which may be important in neurodegenerative diseases such as Alzheimer’s disease. Sheep’s milk shows the highest inhibitory activity of angiotensin converting enzyme, which is crucial in preventing SARS-CoV-2 infection. Systemic inflammation is a common factor in atherosclerosis and COVID-19. Polar lipids present in sheep’s milk lower inflammatory biomarkers and reduce the development of atherosclerosis. Therefore, dairy products can be used to help prevent COVID-19 disease. Sheep’s milk and its products containing bioactive substances may be promising ingredients for the production of health-promoting functional foods.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
METADATA IN OTHER LANGUAGES:
Chinese
羊奶生物活性物质在预防代谢性和病毒性疾病中的作用
关键词:生物活性成分;COVID-19;牛奶;绵羊
摘要: 羊奶具有多种生物效应,影响新陈代谢反应和抗病能力。羊奶含有最高水平的酪蛋白、乳清蛋白和共 轭亚油酸异构体羊奶具有多种生物效应,影响新陈代谢反应和抗病能力。羊奶含有最高水平的酪蛋白、乳 清蛋白和共轭亚油酸异构体(Conjugated linoleic acid isomers,CLA),这些物质可以刺激免疫系统,并具有抗 肥胖、抗糖尿病和抗癌的特性。羊奶是蛋白质和B族维生素最好的来源,它们可确保神经系统的正常功能。 富含脯氨酸的多肽(Proline-rich polypeptide,PRP)可部分逆转神经退行性改变,并具有免疫调节和促进认知 的特性。CLA异构体还可以减少大脑中的氧化应激和线粒体功能障碍,对预防阿尔茨海默病等神经退行性疾 病很重要。羊奶具有最高的血管紧张素转换酶抑制活性,这对预防SARS-CoV-2感染至关重要。全身炎症是 导致动脉粥样硬化和COVID-19的共同因素。羊奶中存在的极性脂可降低炎症生物标志物,减少动脉粥样硬 化的发展。因此,乳制品可以用来帮助预防COVID-19。羊奶及其含有生物活性物质的产品可能是生产保健 功能食品配料的主要发展趋势。
 
REFERENCES (31)
1.
Aguilar F., Charrondiere U.R., Dusemund B. et al., 2009. Orotic acid salts as sources of orotic acid and various minerals added for nutritional purposes to food supplements. EFSA J. 1187, 1–25, https://doi.org/10.2903/j.efsa...
 
2.
Aydın B., Güler Şahin C., Şekeroğlu V., Atlı Şekeroğlu Z., 2021. Conjugated linoleic acid protects brain mitochondrial function in acrolein induced male rats. Toxicol. Mech. Methods 31, 674–679, https://doi.org/10.1080/153765...
 
3.
Basak S., Duttaroy A.K., 2020. Conjugated linoleic acid and its beneficial effects in obesity, cardiovascular disease, and cancer. Nutrients 12, 1913, https://doi.org/10.3390/nu1207...
 
4.
Caboni P., Murgia A., Porcu A., Manis C., Ibba I., Contu M., Scano P., 2019. A metabolomics comparison between sheep’s and goat’s milk. Food Res. Int. 119, 869–875, https://doi.org/10.1016/j.food...
 
5.
Czauderna M., Białek M., Molik E., Zaworski K., 2021. The improved method for determination of orotic acid in milk by ultra-fast liquid chromatography with optimized photodiode array detection. Animals 11, 3196, https://doi.org/10.3390/ani111...
 
6.
Dahiya D.K., Puniya A.K., 2018. Conjugated linoleic acid enriched skim milk prepared with Lactobacillus fermentum DDHI27 endorsed antiobesity in mice. Future Microbiol. 13, 1007–1020, https://doi.org/10.2217/fmb-20...
 
7.
Dario C., Carnicella D., Dario M., Bufano G., 2008. Genetic polymorphism of β-lactoglobulin gene and effect on milk composition in Leccese sheep. Small Rumin. Res. 74, 270–273, https://doi.org/10.1016/j.smal...
 
8.
Djaharuddin I., Munawwarah S., Nurulita A., Ilyas M., Tabri N.A., Lihawaa N., 2021. Comorbidities and mortality in COVID-19 patients. Gac. Sanit. 35, S530–S532, https://doi.org/10.1016/j.gace...
 
9.
Flis Z., Molik E., 2021. Importance of bioactive substances in sheep’s milk in human health. Int. J. Mol. Sci. 22, 4364, https://doi.org/10.3390/ijms22...
 
10.
Gilani S.J., Bin-Jumah M.N., Nadeem M.S., Kazmi I., 2022. Vitamin D attenuates COVID-19 complications via modulation of proinflammatory cytokines, antiviral proteins, and autophagy. Expert Rev. Anti-Infect. Ther. 20, 231–241, https://doi.org/10.1080/147872...
 
11.
Haugsgjerd T.R., Egeland G.M., Nygård O.K., Vinknes K.J., Sulo G., Lysne V., Igland J., Tell G.S., 2020. Association of dietary vitamin K and risk of coronary heart disease in middle-age adults: the Hordaland Health Study Cohort. BMJ Open 10, e035953, https://doi.org/10.1136/bmjope...
 
12.
Jan F., Kumar S., Jha R., 2016. Effect of boiling on the antidiabetic property of enzyme treated sheep milk casein. Vet. World 9, 1152–1156, https://doi.org/10.14202/vetwo...
 
13.
Kaye A.D., Spence A.L., Mayerle M., Sardana N., Clay C.M., Eng M.R., Luedi M.M., Carroll Turpin M.A., Urman R.D., Cornett E.M., 2021. Impact of COVID-19 infection on the cardiovascular system: an evidence-based analysis of risk factors and outcomes. Best Pract. Res. Clin. Anaesthesiol. 35, 437–448, https://doi.org/10.1016/j.bpa....
 
14.
Krieger A.K., Knappe D., Öhlmann S., Mayer L., Eder I.B., Köller G., Hoffmann R., Rieckmann K., Baums C.G., 2021. Proline-rich antimicrobial peptide Api137 is bactericidal in porcine blood infected ex vivo with a porcine or human Klebsiella pneumoniae strain. J. Glob. Antimicrob. Resist. 24, 127–135, https://doi.org/10.1016/j.jgar...
 
15.
Lordan R., Vidal N.P., Huong Pham T., Tsoupras A., Thomas R.H., Zabetakis I., 2020. Yoghurt fermentation alters the composition and antiplatelet properties of milk polar lipids. Food Chem. 332, 127384, https://doi.org/10.1016/j.food...
 
16.
Megalemou K., Sioriki E., Lordan R., Dermiki M., Nasopoulou C., Zabetakis I., 2017. Evaluation of sensory and in vitro anti-thrombotic properties of traditional Greek yogurts derived from different types of milk. Heliyon 3, e00227, https://doi.org/10.1016/j.heli...
 
17.
Millar C.L., Jiang C., Norris G.H., Garcia C., Seibel S., Anto L., Lee J.-Y., Blesso C.N., 2020. Cow’s milk polar lipids reduce atherogenic lipoprotein cholesterol, modulate gut microbiota and attenuate atherosclerosis development in LDL-receptor knockout mice fed a Western-type diet. J. Nutr. Biochem. 79, 108351, https://doi.org/10.1016/j.jnut...
 
18.
Moatsou G., Sakkas L., 2019. Sheep milk components: focus on nutritional advantages and biofunctional potential. Small Rumin. Res. 180, 86–99, https://doi.org/10.1016/j.smal...
 
19.
Molik E., Błasiak M., Pustkowiak H., 2020. Impact of photoperiod length and treatment with exogenous melatonin during pregnancy on chemical composition of sheep’s milk. Animals 10, 1721, https://doi.org/10.3390/ani101...
 
20.
Neelima null, Sharma R., Rajput Y.S., Mann B., 2013. Chemical and functional properties of glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in milk: a review. Dairy Sci. Technol. 93, 21–43, https://doi.org/10.1007/s13594...
 
21.
Oguz M., Gul A., Karakurt S., Yilmaz M., 2020. Synthesis and evaluation of the antitumor activity of Calix[4]arene L-proline derivatives. Bioorg. Chem. 94, 103207, https://doi.org/10.1016/j.bioo...
 
22.
Qian T., Zhao L., Pan X., Sang S., Xu Y., Wang C., Zhong C., Fei G., Cheng X., 2022. Association between blood biochemical factors contributing to cognitive decline and B vitamins in patients with Alzheimer’s disease. Front. Nutr. 9, https://doi.org/10.3389/fnut.2...
 
23.
Quigley E.M.M., 2022. Milk in human health and nutrition: colon cancer prevention. In: P.L.H. McSweeney, J.P. McNamara (Editors). Encyclopedia of Dairy Sciences (Third Edition). Academic Press, Oxford (UK), pp. 888–896, https://doi.org/10.1016/B978-0...
 
24.
Santurino C., López-Plaza B., Fontecha J., Calvo M.V., Bermejo L.M., Gómez-Andrés D., Gómez-Candela C., 2020. Consumption of goat cheese naturally rich in omega-3 and conjugated linoleic acid improves the cardiovascular and inflammatory biomarkers of overweight and obese subjects: a randomized controlled trial. Nutrients 12, 1315, https://doi.org/10.3390/nu1205...
 
25.
Schiffrin E.L., Flack J.M., Ito S., Muntner P., Webb R.C., 2020. Hypertension and COVID-19. Am. J. Hypertens. 33, 373–374, https://doi.org/10.1093/ajh/hp...
 
26.
Sun P., Qie S., Liu Z., Ren J., Li K., Xi J., 2020. Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: a single arm meta-analysis. J. Med. Virol. 92, 612–617, https://doi.org/10.1002/jmv.25...
 
27.
Tagliazucchi D., Martini S., Shamsia S., Helal A., Conte A., 2018. Biological activities and peptidomic profile of in vitro-digested cow, camel, goat and sheep milk. Int. Dairy J. 81, 19–27, https://doi.org/10.1016/j.idai...
 
28.
Tsorotioti S.E., Nasopoulou C., Detopoulou M., Sioriki E., Demopoulos C.A., Zabetakis I., 2014. In vitro anti-atherogenic properties of traditional Greek cheese lipid fractions. Dairy Sci. Technol. 94, 269–281, https://doi.org/10.1007/s13594...
 
29.
Vargas-Bello-Pérez E., Márquez-Hernández R.I., Hernández-Castellano L.E., 2019. Bioactive peptides from milk: animal determinants and their implications in human health. J. Dairy Res. 86, 136–144, https://doi.org/10.1017/S00220...
 
30.
Yasin M., Butt M.S., Zeb A., 2017. Vitamin K2 rich food products. In: J.O. Gordeladze (Editor). Vitamin K2 – Vital for Health and Wellbeing. IntechOpen, London (UK), https://doi.org/10.5772/63902
 
31.
Yenkoyan K., Fereshetyan K., Matinyan S., Chavushyan V., Aghajanov M., 2018. The role of monoamines in the development of Alzheimer’s disease and neuroprotective effect of a proline rich polypeptide. Prog. Neuropsychopharmacol. Biol. Psychiatry 86, 76–82, https://doi.org/10.1016/j.pnpb...
 
 
CITATIONS (3):
1.
Development and Chemico-Physical Characterization of Ovine Milk-Based Ingredients for Infant Formulae
Giacomo Lai, Pierluigi Caboni, Cristina Piras, Massimo Pes, Maria Sitzia, Margherita Addis, Antonio Pirisi, Paola Scano
Applied Sciences
 
2.
Implications of the COVID-19 Pandemic and the Russia-Ukraine Crisis on the Agricultural Sector
 
3.
Functional butter for reduction of consumption risk and improvement of nutrition
Shujie Cheng, Wei Li, Shimin Wu, Yuxing Ge, Caiyun Wang, Siyu Xie, Juan Wu, Xiangke Chen, Ling-Zhi Cheong
Grain & Oil Science and Technology
 
ISSN:1230-1388
Journals System - logo
Scroll to top