0.917
IF5
1.024
IF
Q2
JCR
0.90
CiteScore
0.385
SJR
Q2
SJR
20
MNiSW
142.18
ICV
ORIGINAL PAPER
 
CC-BY 4.0
 
 

Effects of dietary supplementation with Jerusalem artichoke (Helianthus tuberosus L.) tubers on growth performance, nutrient digestibility as well as activity and composition of large intestinal microbiota in rats

L. Samal 1  ,  
 
1
Indian Veterinary Research Institute, Division of Animal Nutrition, Izatnagar-243 122, India
J. Anim. Feed Sci. 2017;26(1):50–58
Publish date: 2017-03-21
KEYWORDS:
ABSTRACT:
In order to investigate the effects of dietary supplementation with Jerusalem artichoke (Helianthus tuberosus L.; JA) as prebiotic, 72 Wistar rats were allocated into 4 groups (JA-0, JA-2, JA-4 and JA-6) and fed for 12 weeks a basal diet supplemented with 0, 2, 4 and 6% of pulverized JA tubers. The JA addition did not affect the growth performance of animals and had no detrimental effect on feed intake, however fibre digestibility was improved (linear, P = 0.003) whereas dry matter and organic matter digestibility (linear, P = 0.012 and 0.001, respectively) were decreased. Apparent digestibility of calcium and phosphorus was increased (quadratic, P = 0.002 and 0.005, respectively) in rats fed diets with JA supplementation. The JA addition into diets significantly (P ≤ 0.05) increased the populations of beneficial Lactobacillus spp. and Bifidobacterium spp. microbiota in the caecal, colonic and rectal digesta. Acetic acid (linear, P = 0.019), propionic acid (linear, P = 0.008) and total short-chain fatty acids (SCFA; linear, P = 0.007) concentrations were elevated as the level of JA in the diet increased. Lactic acid content was increased (quadratic, P = 0.009) whereas pH (linear, P = 0.024 and quadratic, P = 0.047) and ammonia concentration (linear, P < 0.001) were reduced in faeces due to JA supplementation. In conclusion, feeding diets supplemented with JA tuber powder beneficially augments fibre utilization along with better apparent absorption of calcium and phosphorus and positive shift in large intestinal microbiota populations and SCFA concentrations.
CORRESPONDING AUTHOR:
L. Samal   
Indian Veterinary Research Institute, Division of Animal Nutrition, Izatnagar-243 122, India
 
REFERENCES (45):
1. Abhari K., Shekarforoush S.S., Sajedianfard J., Hosseinzadeh S., Nazifi S., 2015. The effects of probiotic, prebiotic and synbiotic diets containing Bacillus coagulans and inulin on rat intestinal microbiota. Iran. J. Vet. Res. 16, 267–273
2. Aduldecha C., Kaewpradit W., Vorasoot N., Puangbut D., Jogloy S., Patanothai A., 2016. Effects of water regimes on inulin content and inulin yield of Jerusalem artichoke genotypes with different levels of drought tolerance. Turk. J. Agric. For. 40, 335–343, https://doi.org/10.3906/tar-1506-39
3. Al-Shagrawi R.A., Al-Ojayan M.O., Sadek M.A., Al-Shayeb I.E., Al-Ruqaie I.M., 1999. Effects of alkaline, hydrogen peroxidetreated fibres on nutrient digestibility, blood sugar and lipid profile in rats. Food Chem. 65, 213–218, https://doi.org/10.1016/S0308-8146(98)00208-8
4. AOAC International, 2005. Official Methods of Analysis of AOAC International. 18th Edition. Gaithersburg, MD (USA)
5. Barszcz M., Taciak M., Skomiał J., 2016. The effects of inulin, dried Jerusalem artichoke tuber and a multispecies probiotic preparation on microbiota ecology and immune status of the large intestine in young pigs. Arch. Anim. Nutr. 70, 278–292, http://dx.doi.org/10.1080/1745039X.2016.1184368
6. Brooks P.H., Moran C.A., Beal J.D., Demecková V., Campbell A., 2001. Liquid feeding for the young piglet. In: M.A. Varley, J. Wiseman (Editors). The Weaner Pig: Nutrition and Management. CAB International, Wallingford (UK), pp. 153–178, https://doi.org/10.1079/9780851995328.0153
7. Cieślik E., Kopeć A., Praznik W., 2005. Healthly properties of Jerusalem artichoke flour (Helianthus tuberosus L.). Electron. J. Pol. Agric. Univ. 8(2), #37, http://www.ejpau.media.pl/volume8/issue2/art-37.html
8. Claus R., Lösel D., Lacorn M., Mentschel J., Schenkel H., 2003. Effects of butyrate on apoptosis in the pig colon and its consequences for skatole formation and tissue accumulation. J. Anim. Sci. 81, 239–248, https://doi.org/10.2527/2003.811239x
9. Coudray C., Bellanger J., Castiglia-Delavaud C., Rémésy C., Vermorel M., Rayssignuier Y., 1997. Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men. Eur. J. Clin. Nutr. 51, 375–380, https://doi.org/10.1038/sj.ejcn.1600417
10. Delzenne N., Aertssens J., Verplaetse H., Roccaro M., Roberfroid M., 1995. Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sci. 57, 1579–1587, https://doi.org/10.1016/00243205(95)02133-4
11. den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.-J., Bakker B.M., 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340, https://doi.org/10.1194/jlr.R036012
12. Flickinger E.A., Van Loo J., Fahey G.C. Jr., 2003. Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: A review. Crit. Rev. Food Sci. Nutr. 43, 19–60, https://doi.org/10.1080/10408690390826446
13. Hesta M., Janssens G.P.J., Debraekeleer J., De Wilde R., 2001. The effect of oligofructose and inulin on faecal characteristics and nutrient digestibility in healthy cats. J. Anim. Physiol. Anim. Nutr. 85, 135–141, https://doi.org/10.1046/j.1439-0396.2001.00308.x
14. Hesta M., Roosen W., Janssens G.P.J., Millet S., De Wilde R., 2003. Prebiotics affect nutrient digestibility but not faecal ammoniain dogs fed increased dietary protein levels. Br. J. Nutr. 90, 1007–1014, https://doi.org/10.1079/BJN2003988
15. Kays S.J., Nottingham S.F., 2007. Chemical composition and inulin chemistry. In: Biology and Chemistry of Jerusalem Artichoke: Helianthus tuberosus L. CRC Press, Boca Raton, FL (USA), pp. 53–96, https://doi.org/10.1201/9781420044966.ch5
16. Kleessen B., Schwarz S., Boehm A., Fuhrmann H., Richter A., Henle T., Krueger M., 2007. Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers. Br. J. Nutr. 98, 540–549, https://doi.org/10.1017/S0007114507730751
17. Kore K.B., Pattanaik A.K., Das A., Sharma K., 2012. Evaluation of mannanoligosaccharide as prebiotic functional food for dogs: effect on nutrient digestibility, hind gut health and plasma metabolic profile. Indian J. Anim. Sci. 82, 81–86
18. Kuo S.-M., Merhige P.M., Hagey L.R., 2013. The effect of dietary prebiotics and probiotics on body weight, large intestine indices and fecal bile acid profile in wild type and IL10−/−mice. PLoS ONE 8, e60270, https://doi.org/10.1371/journal.pone.0060270
19. Lærke H.N., Meyer A.S., Kaack K.V., Larsen T., 2007. Soluble fibre extracted from potato pulp is highly fermentable but has no effect on risk markers of diabetes and cardiovascular disease in Goto-Kakizaki rats. Nutr. Res. 27, 152–160, https://doi.org/10.1016/j.nutres.2007.01.003
20. Massot-Cladera M., Costabile A., Childs C.E., Yaqoob P., Franch À., Castell M., Pérez-Cano F.J., 2015. Prebiotic effects of cocoa fibre on rats. J. Funct. Foods 19, 341–352, https://doi.org/10.1016/j.jff.2015.09.021
21. Mensink M.A., Frijlink H.W., van der Voort Maarschalk K., Hinrichs W.L.J., 2015. Inulin, a flexible oligosaccharide. II: Review of its pharmaceutical applications. Carbohydr. Polym. 134, 418–428, https://doi.org/10.1016/j.carbpol.2015.08.022
22. NRC, 1995. Nutrient Requirements of Laboratory Animals. National Academy Press. Washington, DC (USA), https://doi.org/10.17226/4758
23. Ohta A., Ohtuki M., Takizawa T., Inaba H., Adachi T., Kimura S., 1994. Effects of fructooligosaccharides on the absorption of magnesium and calcium by cecectomized rats. Int. J. Vitam. Nutr. Res. 64, 316–323
24. Øverland M., Kjos N.K., Fauske A.K., Teige J., Sørum H., 2011. Easily fermentable carbohydrates reduce skatole formation in the distal intestine of entire male pigs. Livest. Sci. 140, 206–217, https://doi.org/10.1016/j.livsci.2011.03.032
25. Pawar M.M., 2007. Optimization of homemade diet through supplementation and use of prebiotics in pet dog. M.V.Sc. Thesis Submitted to IVRI, Deemed University, Izatnagar (India)
26. Pradhan S.K., Das A., Kullu S.S., Saini M., Pattanaik A.K., Dutta N., Sharma A.K., 2015. Effect of feeding Jerusalem artichoke (Helianthus tuberosus) root as prebiotic on nutrient utilization, fecal characteristics and serum metabolite profile of captive Indian leopard (Panthera pardus fusca) fed a meat-on-bone diet. Zoo Biol. 34, 153–162, https://doi.org/10.1002/zoo.21187
27. Propst E.L., Flickinger E.A., Bauer L.L., Merchen N.R., Fahey G.C. Jr., 2003. A dose-response experiment evaluating the effects of oligofructose and inulin on nutrient digestibility, stool quality, and fecal protein catabolites in healthy adult dogs. J. Anim. Sci. 81, 3057–3066, https://doi.org/10.2527/2003.81123057x
28. Ramnani P., Gaudier E., Bingham M., van Bruggen P., Tuohy K.M., Gibson G.R., 2010. Prebiotic effect of fruit and vegetable shots containing Jerusalem artichoke inulin: a human intervention study. Br. J. Nutr. 104, 233–240, https://doi.org/10.1017/S000711451000036X
29. Rideout T.C., Fan M.Z., 2004. Nutrient utilisation in response to dietary supplementation of chicory inulin in growing pigs. J. Sci. Food Agric. 84, 1005–1012, https://doi.org/10.1002/jsfa.1751
30. Roberfroid M., Gibson G.R., Hoyles L. et al., 2010. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104, S1–S63, https://doi.org/10.1017/S0007114510003363
31. Rodríguez-Cabezas M.E., Gálvez J., Calmuesco D., Lorente M.D., Concha A., Martinez-Augustin O., Redondo L., Zarzuelo A., 2003. Intestinal anti-inflammatory activity of dietary fiber (Plantago ovata seeds) in HLA-B27 transgenic rats. Clin. Nutr. 22, 463–471, https://doi.org/10.1016/S0261-5614(03)00045-1
32. Rubel I.A., Pérez E.E., Genovese D.B., Manrique G.D., 2014. In vitro prebiotic activity of inulin-rich carbohydrates extracted from Jerusalem artichoke (Helianthus tuberosus L.) tubers at different storage times by Lactobacillus paracasei. Food Res. Int. 62, 59–65, https://doi.org/10.1016/j.foodres.2014.02.024
33. Samal L., Behura N.C., 2015. Prebiotics: an emerging nutritional approach for improving gut health of livestock and poultry. Asian J. Anim. Vet. Adv. 10, 724–739, https://doi.org/10.3923/ajava.2015.724.739
34. Samal L., Chaturvedi V.B., Baliyan S., Saxena M., Pattanaik A.K., 2012. Jerusalem artichoke as a potential prebiotic: influence on nutrient utilization, hindgut fermentation and immune response of Labrador dogs. Anim. Nutr. Feed Technol. 12, 343–352
35. Semjonovs P., Zikmanis P., Bekers M., 2007. An influence of fructan containing concentrate from Jerusalem artichoke tubers on the development of probiotic dairy starters on milk and oat-based substrates. Food Biotechnol. 21, 349–363, https://doi.org/10.1080/08905430701707802
36. Slimestad R., Seljaasen R., Meijer K., Skar S.L., 2010. Norwegian-grown Jerusalem artichoke (Helianthus tuberosus L.): morphology and content of sugars and fructo-oligosaccharides in stems and tubers. J. Sci. Food Agric. 90, 956–964, https://doi.org/10.1002/jsfa.3903
37. Strickling J.A., Harmon D.L., Dawson K.A., Gross K.L., 2000. Evaluation of oligosaccharide addition to dog diets: influences on nutrient digestion and microbial populations. Anim. Feed Sci. Technol. 86, 205–219, https://doi.org/10.1016/S0377-8401(00)00175-9
38. Swanson K.S., Grieshop C.M., Flickinger E.A., Bauer L.L., Healy H.-P.,Dawson K.A., Merchen N.R., Fahey G.C. Jr., 2002. Supplemental fructooligosaccharides and mannanoligosaccharides influence immune function, ileal and total tract nutrient digestibilities, microbial populations and concentrations of protein catabolites in the large bowel of dogs. J. Nutr. 132, 980–989
39. Talapatra S.K., Roy S.C., Sen K.C., 1940. Estimation of phosphorus, chlorine, calcium, magnesium, sodium and potassium in feeding stuffs. Indian J. Vet. Sci. Anim. Husb. 10, 243–258
40. Utami N.W.A., Sone T., Tanaka M., Nakatsu C.H., Saito A., Asano K., 2013. Comparison of yacon (Smallanthus sonchifolius) tuber with commercialized fructo-oligosaccharides (FOS) in terms of physiology, fermentation products and intestinal microbial communities in rats. Biosci. Microb. Food Health 32, 167–178, https://doi.org/10.12938/bmfh.32.167
41. Vhile S.G., Kjos N.P., Sørum H., Øverland M., 2012. Feeding Jerusalem artichoke reduced skatole level and changed intestinal microbiota in the gut of entire male pigs. Animal 6, 807–814, https://doi.org/10.1017/S1751731111002138
42. Wolf B.W., Firkins J.L., Zhang X., 1998. Varying dietary concentrations of fructooligosaccharides affect apparent absorption and balance of minerals in growing rats. Nutr. Res. 18, 1791–1806, https://doi.org/10.1016/S0271-5317(98)00138-9
43. Xu Z.R., Hu C.H., Wang M.Q., 2002. Effects of fructooligosaccharide on conversion of L-tryptophan to skatole and indole by mixed populations of pig fecal bacteria. J. Gen. Appl. Microbiol. 48, 83–89, https://doi.org/10.2323/jgam.48.83
44. Zafar T.A., Weaver C.M., Zhao Y., Martin B.R., Wastney M.E., 2004. Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J. Nutr. 134, 399–402
45. Zentek J., Marquart B., Pietrzak T., 2002. Intestinal effects of mannanoligosaccharides, transgalactooligosaccharides, lactose and lactulose in dogs. J. Nutr. 132, 1682S–1684S
ISSN:1230-1388