Treatment of alfalfa silage with chitosan at different levels to determine chemical, nutritional, fermentation, and microbial parameters
More details
Hide details
Aksaray University, Technical Sciences Vocational School, Department of Food Processing/Milk and Production Technology, Aksaray, Türkiye
Erciyes University, Faculty of Agriculture, Department of Animal Science, 38039 Kayseri,Türkiye
S. Büyükkılıç Beyzi   

Erciyes University
Publication date: 2022-03-17
J. Anim. Feed Sci. 2022;31(1):73–80
Chitosan is a biodegradable, antimicrobial, antifungal polysaccharide, thus used as an additive in different industries. Effects of chitosan supplementations on silage quality traits of alfalfa were investigated in the present study. Chitosan was supplemented into alfalfa silages at four different levels: 0% – CONT group; 0.5% – CHTS0.5 group; 1% – CHTS1.0 group; and 2% – CHTS2.0 group. Neutral detergent fibre (NDF) and neutral detergent insoluble crude protein (NDICP) values increase in CHTS 2.0 group (P < 0.05). Lactic acid and butyric acid contents decreased (P < 0.05), acetic and propionic acid contents increased with chitosan treatments. On the day of opening the silages, mould production was not encountered, and yeast production decreased in chitosan-supplemented groups. Excessive yeast production was encountered, but mould development was not seen in chitosan-supplemented groups 5 days after opening the silages. Silage pH values increased with chitosan treatments (P < 0.05). So, it can be concluded that chitosan negatively influenced fermentation quality of alfalfa silage, but reduced mould and clostridial development.
This study was supported by Scientific Research Projects Department of Aksaray University (with the project number: 2019/027). The authors would like to thank to Dr. Murat Kaya for his valuable suggestions during the experiments.
The Authors declare that there is no conflict of interest.
不同浓度壳聚糖处理对苜蓿青贮化学、营养、发酵和微生 物参数的影响
摘要:壳聚糖是一种可生物降解、抗菌、抗真菌的多糖,因此在不同行业中用作添加剂。本实验研究了添 加壳聚糖对青贮苜蓿品质性状的影响。在苜蓿青贮饲料中添加四种不同水平的壳聚糖:0% - CONT组;0.5% - CHTS 0.5组;1% - CHTS 1.0组;2% -CHTS 2.0组。CHTS 2.0组的中性洗涤剂纤维(NDF)和中性洗涤剂不溶性 粗蛋白(NDICP)显著升高(P < 0.05)。壳聚糖处理使乳酸和丁酸含量降低(P < 0.05),乙酸和丙酸含量 增加。在打开青贮饲料当天,无霉菌产生,添加壳聚糖组的酵母菌减少。在打开青贮饲料5天后,壳聚糖添 加组中的酵母产量过多,但没有发现霉菌生长。青贮饲料pH值随壳聚糖处理的增加而增加(P < 0.05)。因 此,结论是,壳聚糖对苜蓿青贮发酵质量有负面影响,但会减少霉菌和梭菌的产生。
Acar Z., Bostan M., 2016. The effects of some natural additives on quality of alfalfa silage (in Turkish). Anadolu J. Agri. Sci. 31, 433–433, https://doi.org/10.7161/omuana....
Akyıldız R., 1984. Yemler Bilgisi Laboratuar Klavuzu. İkinci Baskı, Ankara Üniv. Ziraat Fakültesi Yayın No. 893, Ankara (Turkey).
AOAC International, 2005. Ash of Animal Feed, in: Official Methods of Analysis of AOAC International 942.05, pp. 8. 18th Edition. Gaithersburg, MD (USA).
AOAC International, 2006. Protein (Crude) in Animal Feed, Combustion Method 990.03, AOAC Official Method, pp. 30–31, 18th Edition. Gaithersburg, MD (USA).
Araújo A.P.C., Venturelli B.C., Santos M.C.B. et al., 2015. Chitosan affects total nutrient digestion and ruminal fermentation in Nellore steers. Anim. Feed Sci. Tech. 206, 114–118, https://doi.org/10.1016/j.anif....
Bryan K.A., 2019. Clean alfalfa haylage [WWW Document]. Progressive Forage, https://www.progressiveforage.....
McDonald P., Henderson A.R., Heron S.J.E., 1991. The Biochemistry of Silage. 2nd Edition, Chalcomb Publ., 3 Marlow, p. 40.
Coblentz W.K., Hoffman P.C., Martin N.P., 2010. Effects of spontaneous heating on forage protein fractions and in situ disappearance kinetics of crude protein for alfalfa-orchardgrass hays packaged in large round bales. J. Dairy Sci. 93, 1148–1169, https://doi.org/10.3168/jds.20....
Del Valle T.A., Zenatti T.F., Antonio G., Campana M., Gandra J.R., Zilio E.M.C., de Mattos L.F.A., de Morais, J.G.P., 2018. Effect of chitosan on the preservation quality of sugarcane silage. Grass Forage Sci. 73, 630–638, https://doi.org/10.1111/gfs.12....
Fadel El-Seed A.N.M.A., Kamel H.E.M., Sekine J., Hishinuma M., Hamana K., 2003. Chitin and chitosan as possible novel nitrogen sources for ruminants. Canadian J. Anim. Sci. 83, 161–163, https://doi.org/10.4141/A02-06....
Gandra J.R., Oliveira E.R., Takiya C.S., Goes R.H.T.B., Paiva P.G., Oliveira K.M.P., Gandra E.R.S., Orbach N.D., Haraki H.M.C., 2016. Chitosan improves the chemical composition, microbiological quality, and aerobic stability of sugarcane silage. Anim. Feed Sci. Tech. 214, 44–52, https://doi.org/10.1016/j.anif....
Gandra J.R., Takiya C.S., Del Valle T.A., Oliveira E.R., de Goes R.H.T.B., Gandra E.R.S., Batista J.D.O., Araki H.M.C., 2018. Soybean whole-plant ensiled with chitosan and lactic acid bacteria: Microorganism counts, fermentative profile, and total losses. J. Dairy Sci. 101, 7871–7880, https://doi.org/10.3168/jds.20....
Goiri I., Oregui L.M., 2010. Use of chitosans to modulate ruminal fermentation of a 50:50 forage-to-concentrate diet in sheep. J. Anim. Sci. 88, 749–755, https://doi.org/10.2527/jas.20....
Goy R.C., De Britto D., Assis O.B.G., 2009. A review of the antimicrobial activity of chitosan. Polim. 19, 241–247, https://doi.org/10.1590/S0104-....
Henry D.D., Ciriaco F.M., Kohmann M., 2015. Effects of chitosan on nutrient digestibility, CH4 emissions, and in vitro. J. Anim. Sci. 93, 3539–3550, https://doi.org/10.2527/jas.20....
Hirano S., 1996. Chitin Biotechnology Applications. Biotech. Annual Rev. 2, 237–258, https://doi.org/10.1016/S1387-....
Inglis G.D., Yanke L.J., Kawchuk L.M., McAllister T.A., 1999. The influence of bacterial inoculants on the microbial ecology of aerobic spoilage of barley silage. Canad. J. Microbiol. 45, 77–87, https://doi.org/10.1139/w98-20....
ISO 10520, 1997. Native starch - Determination of starch content Ewers polarimetric method. Int. Stand, https://www.iso.org/standard/1....
Kızılşimşek M., Erol A., Dönmez R., Katrancı B., 2016. Silaj Mikro Florasının Birbirleri İle İlişkileri, Silaj Fermentasyonu ve Kalitesi Üzerine Etkileri (in Turkish). KSU Doğa Bilim. Derg. 19, 136, https://doi.org/10.18016/ksujn....
Kung L., Shaver R., 2001. Interpretation and use of silage fermentation analysis reports. Focus on Forage. 3, 1–5, https://fyi.extension.wisc.edu....
Kung L., Shaver R.D., Grant R.J., Schmidt R.J., 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101, 4020–4033, https://doi.org/10.3168/jds.20....
Manni L., Ghorbel-Bellaaj O., Jellouli K., Younes I., Nasri M., 2010. Extraction and characterization of chitin, chitosan, and protein hydrolysates prepared from shrimp waste by treatment with crude protease from Bacillus cereus SV1. Appl. Biochem. Biotech. 162, 345–357, https://doi.org/10.1007/s12010....
Martínez-Camacho A.P., Cortez-Rocha M.O., Ezquerra-Brauer J.M., Graciano-Verdugo A.Z., Rodriguez-Félix F., Castillo-Ortega M.M., Yépiz-Gómez M.S., Plascencia-Jatomea M., 2010. Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbo. Poly. 82, 305–315, https://doi.org/10.1016/j.carb....
Menke K.H., Steingass H., 1988. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Dev. 28, 7–55.
Muck R.E., 2010. Silage microbiology and its control through additives. Rev. Brasilian Zootec. 39, 183–191, https://doi.org/10.1590/S1516-....
NRC (National Research Council), 2001. Nutrient Requirements of Dairy Cattle. 7th Revised Edition. The National Academies Press. Washington, DC (USA), https://doi.org/10.17226/9825.
Oude Elferink S.J.W.H., Krooneman E.J., Gottschal J.C., Spoelstra S.F., Faber F., Driehuis F., 2001. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl. Environ. Microbiol. 67, 125–132, https://doi.org/10.1128/AEM.67....
Undersander D., Cosgrove D., Cullen Ei., Grau C., Rice M.E., Renz M., Sheaffer C., Shewmaker G., Sulc M., 2011. Alfalfa Management Guide, Alfalfa Management Guide, https://doi.org/10.2134/2011.a....
Van Soest P.V., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597, https://doi.org/10.3168/jds.S0....