Effect of freshwater microalgae Nannochloropsis limnetica on the rumen fermentation in vitro
D. A. Marrez 1,   A. Cieślak 2,   R. Gawad 3,   H. M. Ebeid 3,   M. Chrenková 4,   M. Gao 2,   Y. R. Yanza 2,   M. El-Sherbiny 3,   M. Szumacher-Strabel 2  
More details
Hide details
National Research Centre, Food Toxins and Contaminants Department, Cairo, Egypt
Poznań University of Life Sciences, Department of Animal Nutrition and Feed Management, Wołyńska 33, 60-637 Poznań, Poland
National Research Centre, Department of Dairy Sciences, 33 Bohouth St., Dokki, 12622 Giza, Egypt
National Agricultural and Food Centre, Hlohovecká 2, 95141, Nitra-Lužianky, Slovakia
M. Szumacher-Strabel   

Poznań University of Life Sciences, Department of Animal Nutrition and Feed Management, Wołyńska 33, 60-637 Poznań, Poland
Publication date: 2017-12-18
J. Anim. Feed Sci. 2017;26(4):359–364
It was hypothesised that Nannochloropsis limnetica due to the specific chemical composition and fatty acids profile, may positively affect rumen fermentation. To confirm this hypothesis the batch culture experiment was conducted to evaluate N. limnetica supplemented at 0, 2, 4 and 6% of the substrate dry matter (DM) on both fermentation and fatty acid proportion in the ruminal culture. It was found that microalgae N. limnetica contain (g · kg−1 DM): crude protein 238, Ca 48.7, Na 31.8 and unsaturated fatty acids (51.7 g · 100 g−1 fatty acids). Moreover, leucine and lysine were the most abundant essential amino acids in the analysed microalgae. The total bacteria count was negatively affected if N. limnetica algae were supplemented at more than 4%. So, the research hypothesis that microalgae N. limnetica may affect rumen fermentation was confirmed, mainly by increasing propionic acid concentration without changes in the total volatile fatty acids concentration. However, a high dose (6%) decreased rumen bacteria count. Further research under commercial farm conditions should be conducted to confirm the usefulness of freshwater microalgae N. limnetica as a feed additive for ruminants.
Allen M.M., 1973. Methods for Cyanophyceae. In: Stein J.R. (Editor). Handbook of Phycological Methods – Culture Methods and Growth Measurements. Cambridge University Press. Cambridge (UK), pp. 127–139.
AOAC International, 1995. Official Methods of Analysis of AOAC International. 16th Edition. Arlington, VA (USA).
Boeckaert C., Vlaeminck B., Fievez V., Maignien L., Dijkstra J., Boon N., 2008. Accumulation of trans C18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio community. Appl. Environ. Microbiol. 74, 6923–6930,
Costa D.F.A., Quigley S.P., Isherwood P., McLennan S.R., Poppi D.P., 2016. Supplementation of cattle fed tropical grasses with microalgae increases microbial protein production and average daily gain. J. Anim. Sci., 94, 2047–2058,
da Silva G.G., Ferreira de Jesus E., Takiya C.S., Del Valle T.A., da Silva T.H., Vendramini T.H.A., Yu E.J., Rennó F.P., 2016. Partial replacement of ground corn with algae meal in a dairy cow diet: Milk yield and composition, nutrient digestibility, and metabolic profile. J. Dairy Sci. 99, 8880–8884,
El-Sherbiny M., Cieslak A., Pers-Kamczyc E., Szczechowiak J., Kowalczyk D., Szumacher-Strabel M., 2016. A nanoemulsified form of oil blends positively affects the fatty acid proportion in ruminal batch cultures. J. Dairy Sci. 99, 399–407,
Gargallo S., Calsamiglia S., Ferret A., 2006. Technical note: A modified three-step in vitro procedure to determine intestinal digestion of proteins. J. Anim. Sci. 84, 2163–2167,
Krienitz L., Hepperle D., Stich H.-B., Weiler W., 2000. Nannochloropsis limnetica (Eustigmatophyceae), a new species of picoplankton from freshwater. Phycologia 39, 219–227,
Kotrbáček V., Doubek J., Doucha J., 2015. The chlorococcalean alga Chlorella in animal nutrition: a review. J. Appl. Phycol. 27, 2173–2180,
Ma Y., Wang Z., Yu Ch., Yin Y., Zhou G., 2014. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Biores. Technol. 167, 503–509.
Maczulak A.E., Dehority B.A., Palmquist D.L., 1981. Effects of longchain fatty acids on growth of rumen bacteria. Appl. Environ. Microbiol. 42, 856–862.
Makkar H.P.S., McSweeney C.S. (Editors), 2005. Methods in Gut Microbial Ecology for Ruminants. Springer. Dordrecht (The Netherlands),
McDougall, 1948. The composition and output of sheep’s saliva. Biochem. J. 43, 99–109.
Moate P.J., Williams S.R.O., Hannah M.C., Eckard R.J., Auldist M.J., Ribaux B.E., Jacobs J.L., Wales W.J., 2013. Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. J. Dairy Sci. 96, 3177–3188,
Rebolloso-Fuentes M.M., Navarro-Pérez A., García-Camacho F., Ramos-Miras J., Guil-Guerrero J.L., 2001. Biomass nutrient profiles of the microalga Nannochloropsis. J. Agric. Food Chem. 49, 2966–2972,
Rippka R., Deruelles J., Waterbury J.B., Herdman M., Stanier R.Y., 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. General Microbiol. 111, 1–61,
Stein J.R., 1973. Handbook of Physiological Methods – Culture Methods and Growth Measurements (Ed Stein J). Cambridge University Press. Cambridge (UK).
Spolaore P., Joannis-Cassan C., Duran E., Isambert A., 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87–96,
Szczechowiak J., Szumacher-Strabel M., El-Sherbiny M., Pers-Kamczyc E., Pawlak P., Cieslak A., 2016. Rumen fermentation, methane concentration and fatty acid proportion in the rumen and milk of dairy cows fed condensed tannin and/or fishsoybean oils blend. Anim. Feed Sci. Technol. 216, 93–107,
Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597,
Nannochloropsis oceanica, a novel natural source of rumen-protected eicosapentaenoic acid (EPA) for ruminants
Susana P. Alves, Sofia H. Mendonça, Joana L. Silva, Rui J. B. Bessa
Scientific Reports
Management of Enteric Methanogenesis in Ruminants by Algal-Derived Feed Additives
Janice McCauley, Leen Labeeuw, Ana Jaramillo-Madrid, Luong Nguyen, Long Nghiem, Alex Chaves, Peter Ralph
Current Pollution Reports
Enhanced biomass productivity of microalgae Nannochloropsis sp. in an airlift photobioreactor using low-frequency flashing light with blue LED
Novita Yustinadiar, Robert Manurung, Gede Suantika
Bioresources and Bioprocessing
Phytogenic Additives Can Modulate Rumen Microbiome to Mediate Fermentation Kinetics and Methanogenesis Through Exploiting Diet–Microbe Interaction
Faiz-ul Hassan, Muhammad Arshad, Hossam Ebeid, Muhammad Rehman, Muhammad Khan, Shehryaar Shahid, Chengjian Yang
Frontiers in Veterinary Science
Chlorella vulgaris microalgae in ruminant nutrition: a review of the chemical composition and nutritive value
Ahmed Kholif, Olurotimi Olafadehan
Annals of Animal Science
Chlorella vulgaris microalgae and copper mixture supplementation enhanced the nutrient digestibility and milk attributes in lactating boer goats
Ahmed Kholif, Ayman Kassab, Hatem Hamdon
Annals of Animal Science
Effects of Chlorella vulgaris, Nannochloropsis oceanica and Tetraselmis sp. supplementation levels on in vitro rumen fermentation
Denis Meehan, Ana Cabrita, Joana Silva, António Fonseca, Margarida Maia
Algal Research
Effect of Cellulase Enzyme Produced from Penicilliumchrysogenum on the Milk Production, Composition, Amino Acid, and Fatty Acid Profiles of Egyptian Buffaloes Fed a High-Forage Diet
Hossam Azzaz, El Abd, Mostafa Khattab, Małgorzata Szumacher-Strabel, Adam Cieślak, Hussein Murad, Maciej Kiełbowicz, Mohamed El-Sherbiny