ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
This study aimed to compare the carbohydrate, fatty acids and digestion values of 29 commercial extruded dry-type dog foods produced for large breed adult dogs. In the study, total dietary fibre (TDF) values of dog foods differed significantly among commercial brands and ranged from 19.02 to 38.09% dry matter (DM) (P < 0.05). The average soluble dietary fibre (SDF) and insoluble dietary fibre (IDF) contents of dog foods were 6.27 and 20.09% DM, respectively. The average values of non-resistant starch and β-glucan in dog foods were 30.90 and 0.52% DM, respectively. The average linoleic acid, α-linolenic acid (ALA) and eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) levels in dog foods were 2.21, 0.03 and 0.11% in DM, respectively. The total starch value was positively correlated with the gas production value (r = 0.516) of dog food (P < 0.05). As a result, it has been determined that the resistant starch and β-glucan levels differ in the dog food. EPA + DHA, linoleic and ALA acids were below international standard values in some dog food samples. Although in vitro digestibility of dog food was adversely affected by the increase in IDF and palmitic acid contents; in vitro digestibility contents in dog food were positively affected by the increase in soluble dietary fibre and stearic acids.
ACKNOWLEDGEMENTS
The support of Erciyes University Scientific Research Projects Coordination Unit (Project No. TSA-2019-9607) is greatly acknowledged.
CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.
 
REFERENCES (38)
1.
Alvarenga I.C., Aldrich C.G., 2020. Starch characterization of commercial extruded dry pet foods. Transl. Anim. Sci. 4, 1017–1022, https://doi.org/10.1093/tas/tx....
 
2.
Berg T., Singh J., Hardacre A., Boland M.J., 2012. The role of cotyledon cell structure during in vitro digestion of starch in navy beans. Carbohydr. Polym. 87, 1678–1688, https://doi.org/10.1016/j.carb....
 
3.
Beynen A.C., 2020. Omega-6:3 ratio in dog food. Bonny Canteen 1, 38–49, https://www.researchgate.net/p....
 
4.
Bosch G., Pellikaan W.F., Rutten P.G.P., van der Poel A.F.B., Verstegen M.W.A., Hendricks W.H., 2008. Comparative in vitro fermentation activity in the canine distal gastrointestinal tract and fermentation kinetics of fiber sources. J. Anim. Sci. 86, 2979–2989, https://doi.org/10.2527/jas.20....
 
5.
Calabrò S., Carciofi A.C., Musco N., Tudisco R., Gomes M.O.S., Cutrignelli M.I., 2013. Fermentation characteristics of several carbonhydrate sources for dog diets using the in vitro gas production technique. Ital. J. Anim. Sci. 12, e4, https://doi.org/10.4081/ijas.2....
 
6.
Case L.P., Daristotle L., Hayek M.G., Raasch M.F., 2011. Canine and Feline Nutrition: A Resource for Companion Animal Professionals. 3rd Edition. Mosby – Elsevier. Maryland Heights, MO (USA) https://doi.org/10.1016/C2009-....
 
7.
Catchpole B., Adams J.P., Holder A.L., Short A.D., Ollier W.E.R., Kennedy L.J., 2013. Genetics of canine diabetes mellitus: Are the diabetes susceptibility genes identified in humans involved in breed susceptibility to diabetes mellitus in dogs? Vet. J. 195, 139–347, https://doi.org/10.1016/j.tvjl....
 
8.
Cho S.S., Dreher M.L. (Editors), 2001. Handbook of Dietary Fiber. Marcel Dekker. New York, NY (USA), pp. 868, https://doi.org/10.1201/978020....
 
9.
Dhital S., Warren F.J., Butterworth P.J., Ellis P.R., Gidley M.J., 2017. Mechanisms of starch digestion by α-amylase – structural basis for kinetic properties. Crit. Rev. Food Sci. Nutr. 57, 875–892, https://doi.org/10.1080/104083....
 
10.
El Khoury D., Cuda C., Luhovyy B.L., Anderson G.H., 2012. Beta glucan: health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012, 851362, https://doi.org/10.1155/2012/8....
 
11.
Englyst H., 1989. Classification and measurement of plant polysaccharide. Anim. Feed. Sci. Technol. 23, 27–42, https://doi.org/10.1016/0377-8....
 
12.
Englyst H.N., Kingman S.M., Cummings J.H., 1992. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46, 33–50.
 
13.
Fahey G.C., Merchen N.R., Corbin J.E., Hamilton A.K., Serbe K.A., Lewis S.M., Hirakawa D.A., 1990. Dietary fiber for dogs: I. Effects of graded levels of dietary beet pulp on nutrient intake, digestibility, metabolizable energy and digesta mean retention time. J. Anim. Sci. 68, 4221–4228, https://doi.org/10.2527/1990.6....
 
14.
FEDIAF (The European Pet Food Industry), 2020. Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs. Bruxelles (Belgium), https://fediaf.org/self-regula....
 
15.
Fleeman L.M., Rand J.S., 2001. Management of canine diabetes. Vet. Clin. N. Am. 31, 855–880, https://doi.org/10.1016/S0195-....
 
16.
Glodde F., Günal M., Kinsel M.E., AbuGhazaleh A., 2018. Effects of natural antioxidants on the stability of omega-3 fatty acids in dog food. J. Vet. Res. 62, 103–108, https://doi.org/10.1515/jvetre....
 
17.
Guevara M.A., Bauer L.L., Abbas C.A., Beery K.E., Holzgraefe D.P., Cecava M.J., Fahey Jr. G.C., 2008. Chemical composition, in vitro fermentation characteristics, and in vivo digestibility responses by dogs to select corn fibers. J. Agric. Food Chem. 56, 1619–1626, https://doi.org/10.1021/jf0730....
 
18.
Hamer H.M., Jonkers D., Venema K., Vanhoutvin S., Troost F.J., Brummer R.J., 2008. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27, 104-119, https://doi:10.1111/j.1365-203....
 
19.
Hervera M., Baucells M.D., Blanch F., Castrillo C., 2007. Prediction of digestible energy content of extruded dog food by in vitro analyses. J. Anim. Physiol. Anim. Nutr. 91, 205–209, https://doi.org/10.1111/j.1439....
 
20.
Hillestad K., 2018. Shelf life of pet food. https://www.petcoach.co/articl... (date of access: 27.11.2020).
 
21.
Jacob J.P., Pescatore A.J., 2014. Barley β-glucan in poultry diets. Ann. Transl. Med. 2, 20, https://doi.org/10.3978/j.issn....
 
22.
Jaworski N.W., Lærke H.N., Bach Knudsen K.E., Stein H.H., 2015. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains. J. Anim. Sci. 93, 1103–1113, https://doi.org/10.2527/jas.20....
 
23.
Kara K., 2020a. Determination of the in vitro digestibility and nutrient content of commercial premium extruded foods with different types of protein content for adult dogs. Vet. Med. 65, 233–249, https://doi.org/10.17221/139/2....
 
24.
Kara K., 2020b. Milk urea nitrogen and milk fatty acid compositions in dairy cows with subacute ruminal acidosis. Vet. Med. 65, 336–345, https://doi.org/10.17221/51/20....
 
25.
Kara K., Guclu B.K., Baytok E., 2019. Comparison of fermentative digestion levels of processed different starch sources by Labrador Retrievers at different ages. Vet. Med. 64, 158–171, https://doi.org/10.17221/105/2....
 
26.
Kimura T., 2013. The regulatory effects of resistant starch on glycaemic response in obese dogs. Arch. Anim. Nutr. 67, 503–509, https://doi.org/10.1080/174503....
 
27.
Klopfenstein C., 1990. Nutritional properties of coarse and fine sugar beet fibre and hard red wheat bran. I. Effects on rat serum and liver cholesterol and triglycerides and on fecal characteristics. Cereal Chem. 67, 538–541.
 
28.
Martens B.M.J., Gerrits W.J.J., Bruininx E.M.A.M., Schols H.A., 2018. Amylopectin structure and crystallinity explains variation in digestion kinetics of starches across botanic sources in an in vitro pig model. J. Anim. Sci. Biotechnol. 9, 91, https://doi.org/10.1186/s40104....
 
29.
NRC (National Research Council), 2006. Nutrient Requirements of Dogs and Cats. The National Academies Press. Washington, DC (USA), https://doi.org/10.17226/10668.
 
30.
Peixoto M.C., Ribeiro É.M., Maria A.P.J., Loureiro B.A., di Santo L.G., Putarov T.C., Yoshitoshi F.N., Pereira G.T., Sá L.R.M., Carciofi A.C., 2018. Effect of resistant starch on the intestinal health of old dogs: fermentation products and histological features of the intestinal mucosa. J. Anim. Physiol. Anim. Nutr. 102, 111–121, https://doi.org/10.1111/jpn.12....
 
31.
Peñalver R., Lorenzo J.M., Ros G., Amarowicz R., Pateiro M., Nieto G., 2020. Seaweeds as a functional ingredient for a healthy diet. Mar. Drugs 18, 301, https://doi.org/10.3390/md1806....
 
32.
Sunvold G.D., Fahey Jr. G.C., Merchen N.R., Titgemeyer E.C., Bourquin L.D., Bauer L.L., Reinhart G.A., 1995. Dietary fiber for dogs: IV. In vitro fermentation of selected fiber sources by dog fecal inoculum and in vivo digestion and metabolism of fiber-supplemented diets. J. Anim. Sci. 73, 1099–1109, https://doi.org/10.2527/1995.7....
 
33.
Sudha M.L., Baskaran V., Leelavathi K., 2007. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 104, 686–692, https://doi.org/10.1016/j.food....
 
34.
Voet D., Voet J.G., Pratt C.W., 2016. Fundamentals of Biochemistry: Life at the Molecular Level. 5th Edition. John Wiley & Sons, Inc. Hoboken, NJ (USA), pp. 1184.
 
35.
Walters J.M., Hackett T.B., Ogilvie G.K., Fettman M.J., 2010. Polyunsaturated fatty acid dietary supplementation induces lipid peroxidation in normal dogs. Vet. Med. Int. 2010, 619083, https://doi.org/10.4061/2010/6....
 
36.
Wang J., Wu W., Wang X., Wang M., Wu F., 2015. An affective GC method for the determination of the fatty acid composition in silkworm pupae oil using a two-step methylation process. J. Serbian Chem. Soc. 80, 9–20, https://doi.org/10.2298/JSC140....
 
37.
Wani I.A., Sogi D.S., Hamdani A.M., Gani A., Bhat N.A., Shah A., 2016. Isolation, composition, and physicochemical properties of starch from legumes: a review. Starch 68, 834–845, https://doi.org/10.1002/star.2....
 
38.
Yuangklang C., Vasupen K., Wongsuthavas S., Beynen A.C., 2016. Digestibility of a structural fat consisting of stearic and palmitic acid in dogs. J. Mahanakorn Vet. Med. 11, 47–56, https://li01.tci-thaijo.org/in....
 
ISSN:1230-1388