ORIGINAL PAPER
Water use optimization for two commercial maize hybrids for forage production in semi-arid environment
,
 
,
 
,
 
,
 
,
 
,
 
 
 
More details
Hide details
1
National Research Institute for Livestock, Agriculture and Forestry (INIFAP), Campo Experimental Zacatecas, 98500, Calera de Victor Rosales, Zacatecas, México
2
United Academy of Agronomy, Autonomus University of Zacatecas, 98187 Cieneguillas, Zacatecas, México
3
National Research Institute for Livestock, Agriculture and Forestry (INIFAP), Campo Experimental La Laguna, 27440, Matamoros, Coahuila, México
4
National Research Institute for Livestock, Agriculture and Forestry (INIFAP), Campo Experimental La Campana, 32190, Aldama, Chihuahua, México
5
United Academy of Veterinary Medicine and Zootechnics, Autonomus University of Zacatecas, 98500, Enrique Estrada, Zacatecas, Mexico
CORRESPONDING AUTHOR
R.A. Sanchez   

National Research Institute for Livestock, Agriculture and Forestry (INIFAP), Campo Experimental Zacatecas, 98500, Calera de Victor Rosales, Zacatecas, México
Publication date: 2022-03-15
 
J. Anim. Feed Sci. 2022;31(1):81–87
 
KEYWORDS
TOPICS
ABSTRACT
The objective of the study was to determine the effects of different irrigation levels on the yield and quality characteristics of two silage maize hybrids. Hybrids were established under four treatments of irrigation regimes with different tension in the soil: T1) 5–15 cbar, T2) 25–35 and 75–95 cbar, T3) 75–90 and 25–35 cbar, T4) 95–110 cbar. Variables were: dry matter yield (DMY), plant height, efficient irrigation water, efficient use of water resources, crude protein, neutral and acid detergent fibre (NDF and ADF, respectively), and net energy for lactation. Data analysis was undertaken with a randomized block design for each maize hybrid. Subsequently, quadratic equations were made to determine a maximum relative value. Irrigation treatment showed statistical differences between means in all agronomic hybrid characteristics. The best DMY in H-311 hybrid was noted in T1, T2, and T3 treatments (29 756–31 061 kg/ha), for 35p12 hybrid the best was T3 with 30 221 kg/ha. There were no differences in nutritional variables for H-311 hybrid. In 35p12 hybrid, T4 accumulated the highest concentrations of NDF and ADF with 61.83 and 44.19%, respectively. The maximum relative value of efficient use of water resource in H-311 was 4.9 kg/m3 with 518 mm, and 35p12 showed 5.6 kg/m3 with 405 mm. So, it is possible to achieve optimal yield and quality forage, reducing the depletion of aquifers.
ACKNOWLEDGEMENTS
This research was financed by National Research Institute for Livestock, Agriculture and Forestry (INIFAP), and publication was financed by Zacatecan Council of Science, Technology and innovation (Cozcyt).
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
METADATA IN OTHER LANGUAGES:
Chinese
半干旱环境下两个饲用玉米商品杂交种生产的水分优化利用
关键词:农业工业残留物、替代成分、纤维、pH值、小型反刍动物
摘要:本研究旨在确定不同灌溉水平对两个青贮玉米杂交种产量和品质特性的影响。在四种不同土壤张 力的灌溉制度下建立杂交种:T1)5 ⁓ 15 cbar,T2)25 ⁓ 35和75 ⁓ 95 cbar,T3)75 ⁓ 90和25 ⁓ 35 cbar,T4) 95 ⁓ 110 cbar。变量包括:干物质产量(DMY)、株高、有效灌溉水、水资源的有效利用、粗蛋白质、中性和 酸性洗涤纤维(分别为NDF和ADF)以及泌乳净能量。采用随机区组设计对每个玉米杂交种进行数据分析。 随后,建立二次方程以确定最大相对值。不同灌溉处理的两个杂交玉米种所有农艺杂交性状的均值均存在 统计差异。在T1、T2和T3处理(29 756 ⁓ 31 061 kg/ha)中,H-311杂交种的DMY最好,在35p12杂交种中,T3处 理(30 221 kg/ha)的DMY最好。H-311杂交种的营养变量没有差异。在35p12杂交种中,T4积累的NDF和ADF浓 度最高,分别为61.83%和44.19%。H-311水资源有效利用的最大相对值为4.9 kg/m3(518 mm),35p12为5.6 kg/m3 (405 mm)。因此,水分优化利用有可能实现最佳产量和优质饲料,减少含水层的损耗
 
REFERENCES (35)
1.
Ahmad I., Aftab W.S., Ahmad A., Masud Ch.M.J., Judge J., 2018. Optimizing irrigation and nitrogen requirements for maize through empirical modeling in semi-arid environmental. Environ. Sci. Pollut. Res., https://doi.org/10.1007/s11356....
 
2.
AOAC International, 1995. Official Methods of Analysis of AOAC International. 16th Edition. Arlington, VA (USA).
 
3.
Beyhan U.A., Gencoglan C., Cuney B.M., Turan N., Arslan H., Inal B., 2016. Determination of water-efficiency relationship and silage quality characteristics of the maize species por silage (Zea mays L.) the first production grown under semi-arid climate condition. Fresenius Environ. Bull. 25, 6053–6068.
 
4.
Blümmel M., Haileslassie A., Samireddypalle A., Vadez, V., Notenbaert A., 2014. Livestock water productivity: feed resourcing, feeding and coupled feed-water resource data bases. Anim. Prod. Sci. 54, 1584–1593, https://doi.org/10.1071/AN1460....
 
5.
Buyuktas D., Bastug R., Ozen N., Aydinsakir K., Karaca C., Curek M., Erdal S., 2021. Evapotranspiration, yield and silage quality characteristics of three maize hybrids grown under Mediterranean conditions. Arch. Acker. Pflanzenbau. Bodenkd. 67, 1341–1358, https://doi.org/10.1080/036503....
 
6.
Demir Z., Kececi M., Erol T.A., 2020. Effects of nitrogen fertigation on yield, quality components, water use efficiency and nitrogen use efficiency of silage maize (Zea Mays L.) as the second crop. J. Plant Nutr.,https://doi.org/10.1080/019041....
 
7.
Flores O.M.A., Figueroa V.U., 2010. Production and ensilage maize silage irrigated. In: V.R. Velazquez, G.G. Medina (Editors). INIFAP-Zacatecas Experimental Station. Zacatecas (Mx).
 
8.
Gallo A., Giuberti G., Masoero F., Palmonari A., Fiorentini L., Moschini M., 2014. Response on yield and nutritive value of two commercial maize hybrids as a consequence of a water irrigation reduction. Ital. J. Anim. Sci. 13, 594–599, https://doi.org/10.4081/ijas.2....
 
9.
Gheysari M., Sadeghi S.H., Loescher H.W., Amiri S., Zareian M.J., Majidi M.M., Payero J.O., 2017. Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize. Agric. Water Manag. 182, 126–138, https://doi.org/10.1016/j.agwa....
 
10.
Goering H.K.,Van Soest P.J., 1970. Forage fiber analyses (apparatus, reagents, procedures, and some applications) (No. 379). US Agricultural Research Service.
 
11.
Gozubuyuk Z., Sahin U., Adiguzel M.C., Dasci E., 2020. Energy use efficiency of deficit-irrigated silage maize in different soil tillage practices on a high plain with a semi-arid climate. Arch. Acker Pflanzenbau Bodenkd. 66, 1611–1626, https://doi.org/10.1080/036503....
 
12.
Guevara E.A., Barcenas H.G., Salazar M.F.R., Gonzalez S.E., Suzan A.H., 2005. Production of maize using high density sowing and subsurface drip irrigation. Agrociencia. 39, 431–439.
 
13.
Hatfield J.L., Dold Ch., 2019. Water-Use Efficiency: Advances and challenges in a Changing climate. Front. Plant Sci. 10, 1–14, https://doi.org/10.3389/fpls.2....
 
14.
Heinke J., Lannerstad M., Gerten D., Havlík P., Herrero M., Notenbaert A. M. O., Müller C., 2020. Water use in global livestock production-Opportunities and constraints for increasing water productivity. Water Resour. Res. 56, 1–16, https://doi.org/10.1029/2019WR....
 
15.
Horrocks R.D., Vallentine J.F., 1999. Harvested forage. Academic Press. London (UK).
 
16.
Jahansouz M.R., Afshar R.K., Heidari H., Hashemi M., 2014. Evaluation of yield and quality of sorgum and millet as alternative forage crops to corn under normal and deficit irrigation regimes. JJAS, 10, 669–714, https://doi.org/10.12816/00317....
 
17.
Martinez G.M.I., Gaytan B.R., Reyes M.L., Luna F.M., Padilla J.S., Mayek P.N., 2004. Grain and forage yield of irrigation maize hybrids in Aguascalientes and Zacatecas. Mexico. Agric. Tec. Mex. 10, 56–61.
 
18.
Morand V., Balbi C.N., 2020. Whole plant maize silage: effect of genotype and cutting height on production and quality of livestock feed. Info. Tec. 31, 231–240, https://doi.org/10.4067/S0718-...
 
19.
Nagore M.L., Maggiora A.D., Andrade F.H., Echarte L., 2017. Water use efficiency for grain yield in an old and two more recent maize hybrids. 214, 185–193, https://doi.org/10.1016/j.fcr.....
 
20.
Núñez H.G., Payán G.J.A., Pena R.A., González C.F., Ruiz B.O., Arzola A.C., 2010. Forage quality and agronomic characterization of annual forage species in North-Central Mexico. Rev. Mex. Cienc. Pecu. 1, 85–98.
 
21.
Pedroza S.A., Rios F.J.L., Torres M.M. Cantu B.J.E., Piceno S.C., Yañez Ch.L.G., 2014. Irrigation water efficiency in the forage corn (Zea mays L.) and alfalfa (Medicago sativa) production and its social and economic impact. Terra Latin. 32, 231–239.
 
22.
Peña R.A., González C.F., Nuñez H.G., Tovar G.M., Vidal M.V.A., Ramírez D.J.L., 2012. Heterosis and combinig abilit y for forage yield and quality in six maize population. Rev. Mex. Cienc. Pecu. 3, 389–406.
 
23.
Peña R.A., Núñez H.G., González C.F., 2002. Forage potential of some maize population and relationship between their agronomic characteristics and nutritional quality. Tec. Pecu Mex. 40, 215–228.
 
24.
R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, (Austria), https://www.R-project.org/
 
25.
Reyes G.A., Reta S.D.G., Sanchez D.J.I., Franco G.I., Hernandez L.E., Rodriguez H.K., 2020. Yield and water productivity in forage corn (Zea mays L.) with subsurface drip irrigation. Cien. Inn. 3, 615–622.
 
26.
Ruiz C.J.A., Medina G.G., Ramirez D.J.L., Flores L.H.E., Ramirez O.G., Manriquez O.J.D., Zarazua V.P., Gonzalez E.D.R., Diaz P.G., Mora O.C., 2011. Climate change and its implications in five producing areas of maize in Mexico. Rev. Mex. Cienc. Agric. 2, 309–323.
 
27.
SAS (Statistical Analysis System), 2011. Base SAS® 9.3 Software. SAS Institute Inc., Cary, NC (USA).
 
28.
Seif F., Paknejad F., Azizi F., Kashani A., Shahabifar M., 2016. Effect of different irrigation regimes and zeolite application on yield and quality of silage corn hybrids. J. Exp. Biol. Agric. Sci. 4, 722–729, https://doi.org/10.18006/2016.....
 
29.
Serbester U., Akkaya M.R., Yucel C., Gorgulu M., 2015. Comparison of yield, nutritive value, and in vitro digestibility of monocrop and intercopped corn-soybean silages cut at two maturity stages. Ital. J. Anim. Sci. 14, 66–70, https://doi.org/10.4081/ijas.2....
 
30.
Serna P.A., Zegbe J.A., Mena C.J., 2011. Yield and fruit quality of „Mirasol” dry chili cropped under partial rootzone drying. Rev. Chapingo Ser. Hortic. 17, 19–24, https://doi.org/10.5154/r.rchs....
 
31.
Shahrabian E., Soleymani A., 2011. Response of forage maize hybrids to different regimes or irrigation. Res. On Crops. 12, 53–59.
 
32.
Smith S., 2007. Pedigree pedigree blackground changes in U.S. hybrid maize between 1980 and 2004. Crop Sci. 47, 1914–926, https://doi.org/10.2135/cropsc....
 
33.
Taher S.M., Rjafallanh M., Kuper M., Le G.P., 2009. Water productivity through dual propose purpose (milk and meat) herds in the tadla irrigation scheme, Moroco. Irrig. Drain 58, 334–345, https://doi.org/10.1002/ird.53....
 
34.
Yescas C.P., Segura C.M.A., Martinez C.L., Alvarez R.V.P., Montemayor T.J.A., Orozco V.J.A., Frias R.J.E., 2015. Yield and quality of forage maize (Zea mays L.) with different level of subsurface drip irrigation and plant density. Phyton. 84, 272–279, https://doi.org/10.32604/phyto....
 
35.
Zhang Q., Bell L.W., Shen Y., Wish J.P.M., 2018. Indices for forage nutritional yield and water use efficiency amongst spring-sow annual forage crops in north-west China. Eur. J. Agron. 93, 1–10, https://doi.org/10.1016/j.eja.....
 
ISSN:1230-1388