0.906
IF5
0.875
IF
Q3
JCR
1.0
CiteScore
0.374
SJR
Q2
SJR
20
MNiSW
165.24
ICV
ORIGINAL PAPER
 
CC-BY 4.0
 
 

The in vitro digestion of neutral detergent fibre and other ruminal fermentation parameters of some fibrous feedstuffs in Damascus goat (Capra aegagrus hircus)

K. Kara 1  
 
1
Erciyes University, Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, 38280, Kayseri, Turkey
J. Anim. Feed Sci. 2019;28(2):159–168
Publish date: 2019-05-31
KEYWORDS
TOPICS
ABSTRACT
The study aimed to compare in vitro gas and methane production and ruminal fermentation patterns of lucerne hay (Medicago sativa L.), sugar beet pulp (Beta vulgaris L.), maize silage (Zea mays L.), plantago hay (Plantago lanceolata L.), ajuga hay (Ajuga bombycina L.), guelder-rose leaf (Viburnum opulus L.), tomato pomace (Solanum lycopersicum L.), Jerusalem artichoke hay (Helianthus tuberosus) and pomegranate peel (Punica granatum L.) in rumen fluid of Damascus goats. Ruminal fermentation parameters such as kinetics, gas production, organic matter digestibility-gas (OMdgas), true-dry matter digestibility (T-DMd), true-organic matter digestibility (T-OMd), true-neutral detergent fibre digestibility (T-NDFd), partitioning factor (PF24) and gas yield (GY24) and metabolizable energy (ME) were determined. The highest gas production from insoluble fraction (bgas) and potential gas production (a+b)gas were in tomato pomace (P < 0.001). The (bgas) and (a+b)gas values of plantago, ajuga and Jerusalem artichoke hays were higher than those of lucerne hay (P < 0.001). The T-DMd, T-OMd, T-NDFd, OMdgas, ME and methane values of tomato pomace and sugar beet pulp were the highest in tested forages (P < 0.01). The highest acetic acid concentration in fermentation fluid was in Jerusalem artichoke hay and maize silage; the molarities of volatile fatty acids in fermentation fluids were ranged from 91.84 to 104.21 (P < 0.001). It can be concluded that tomato pomace and sugar beet pulp have the digestive potential in the goat rumen, although they promote high methane production. Moreover, hays of plantago, ajuga and Jerusalem artichoke as well as pomegranate peels may be used as alternative forages to common fibrous feedstuffs like lucerne hay in goat nutrition.
CORRESPONDING AUTHOR
K. Kara   
Erciyes University, Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, 38280, Kayseri, Turkey
 
REFERENCES (38):
1. Allen M.S., 1997. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J. Dairy Sci. 80, 1447–1462, https://doi.org/10.3168/jds.S0....
2. Altın T.B., Barak A.E., Altın B.N., 2012. Change in precipitation and temperature amounts over three decades in Central Anatolia, Turkey. Atmos. Clim. Sci. 2, 107–125, https://doi.org/10.4236/acs.20....
3. AOAC, 1980. Official Methods of Analysis of the Association of Official Analytical Chemists. 13th Edition. Washington, DC (USA).
4. AOAC, 1990. Official Methods of Analysis of the Association of Official Analytical Chemists. 15th Edition. Arlington, VA (USA).
5. Barry T.N., Blaney B.J., 1987. Secondary compounds of forages. In: J.B. Hacker, J.H. Ternouth (Editors). Nutrition of Herbivores. Academic Press, Sydney (Australia), pp. 91–119.
6. Blümmel M., Ørskov E.R., 1993. Comparison of in vitro gas production and nylon bag degradability of roughages in predicting of food intake in cattle. Anim. Feed Sci. Technol. 40, 109–119, https://doi.org/10.1016/0377-8....
7. Combs D., 2018. Forage Energy and Digestibility: TTNDFD: Anew (and) better tool for assessing forage quality. Department of Dairy Science, University of Wisconsin, Madison, Wisconsin, USA.
8. Ebrahimi B., 2012. Evaluation of pomegranate pomace using gas production technique. Eur. J. Exp. Biol. 2, 853–854.
9. Ersahince A.C., Kara K., 2017. Nutrient composition and in vitro digestion parameters of Jerusalem artichoke (Helianthus tuberosus L.) herbage at different maturity stages in horse and ruminant. J. Anim. Feed Sci. 26, 213–225, https://doi.org/10.22358/jafs/....
10. Hook S.E., Wright A.D.G., McBride B.W., 2010. Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010, 945785, https://doi.org/10.1155/2010/9....
11. IPCC (The Intergovernmental Panel on Climate Change), 2014. Summary for Policymakers. In: O. Edenhofer, R. PichsMadruga, Y. Sokona et al. (Editors). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge (UK) and New York, NY (USA).
12. Jakhesara S.J., Koringa P.G., Ramani U.V. et al., 2010. Comparative study of tannin challenged rumen microbiome in goat using high throughput sequencing technology. Dev. Microbiol. Mol. Biol. 1, 95–106.
13. Jang S.Y., KimE.Y., Park J.H., OhM.R., Tang Y.J., Ding Y.L., Seong H.J., Kim W.H., Yun Y.S., Moon S.H., 2017. Effects of physically effective neutral detergent fiber content on dry matter intake, digestibility, and chewing activity in Korean native goats (Capra hircus coreanae) fed with total mixed ration. AsianAustralas. J.Anim. Sci. 30, 1405–1409, https://doi.org/10.5713/ajas.1....
14. Kara K., 2016. Effect of dietary fibre and condensed tannins concentration from various fibrous feedstuffs on in vitro gas production kinetics with rabbit faecal inoculum. J. Anim. Feed Sci. 25, 266–272, https://doi.org/10.22358/jafs/....
15. Kara K., Güçlü B.K., Aktuğ E., Baytok E., 2015a. The determination of nutrient matter composition and in vitro digestion parameters of narrow-leaf plantain (Plantago lanceolata) in ruminant. J. Health Sci. 24, 149–155.
16. Kara K., Güçlü B.K., Baytok E., 2015b. Comparison of nutrient composition and anti-methanogenic properties of different Rosaceae species. J. Anim. Feed Sci. 24, 308–314, https://doi.org/10.22358/jafs/....
17. Kara K., Guclu B.K., Baytok E., Aktug E., Oguz F.K., Kamalak A., Atalay A.I., 2018a. Investigation in terms of digestive values, silages quality and nutrient content of the using pomegranate pomace in the ensiling of apple pomace with high moisture contents. J. Appl. Anim. Res. 46, 1233–1241, https://doi.org/10.1080/097121....
18. Kara K., Ozkaya S., Baytok E., Guclu B.K., Aktug E., Erbas S., 2018b. Effect of phenological stage on nutrient composition, in vitro fermentation and gas production kinetics of Plantago lanceolata herbage. Vet. Med. 63, 251–260, https://doi.org/10.17221/2/201....
19. Lee H.J., Jung J.Y., Oh Y.K., Lee S.-S., Madsen E.L., Jeona C.O., 2012. Comparative survey of rumen microbial communities and metabolites across one caprine and three bovine groups, using barcoded pyrosequencing and 1H nuclear magnetic resonance spectroscopy. Appl. Environ. Microbiol. 78, 5983–5993, https://doi.org/10.1128/AEM.00....
20. Lopes F., Cook D.E., Combs D.K., 2015a. Validation of an in vitro model for predicting rumen and total-tract fiber digestibility in dairy cows fed corn silages with different in vitro neutral detergent fiber digestibilities at 2 levels of dry matter intake. J. Dairy Sci. 98, 574–585, https://doi.org/10.3168/jds.20....
21. Lopes F., Ruh K., Combs D.K., 2015b. Validation of an approach to predict total-tract fiber digestibility using a standardized in vitro technique for different diets fed to high-producing dairy cows. J. Dairy Sci. 98, 2596–602, https://doi.org/10.3168/jds.20....
22. Makkar H.P.S., Blümmel M., Becker K., 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nutr. 73, 897–913, https://doi.org/10.1079/BJN199....
23. Menke K.H., Steingass H., 1987. Estimation of energetic feed value from gas formation determined in vitro with rumen fluid and chemical analysis. II. Regression equations [in German: Schätzung des energetischen Futterwerts aus der in vitro mit Pansensaft bestimmten Gasbildung und der chemischen Analyse. II. Regressionsgleichungen]. Übers Tierernährg. 15, 59–94.
24. Menke H.H., Steingass H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7–55.
25. Min B.R., Pinchak W.E., Anderson R.C., Fulford J.D., Puchala R., 2006. Effects of condensed tannins supplementation level on weight gain and in vitro and in vivo bloat precursors in steers grazing winter wheat. J. Anim. Sci. 84, 2546–2554, https://doi.org/10.2527/jas.20....
26. Mirzaei-Aghsaghali A., Maheri-Sis N., Mansouri H., Razeghi M.E., Mirza-Aghazadeh A., Cheraghi H., AghajanzadehGolshani A., 2011. Evaluating potential nutritive value of pomegranate processing by-products for ruminants using in vitro gas production technique. ARPN J. Agric. Biol. Sci. 6, 45–51.
27. Muir J.P., 2011. The multi-faceted role of condensed tannins in the goat ecosystem. Small Ruminant Res. 98, 115–120, https://doi.org/10.1016/j.smal....
28. Musco N., Koura I.B., Tudisco R., Awadjihè G., Adjolohoun S., Cutrignelli M.I., Mollica M.P., Houinato M., Infascelli F., Calabrò S., 2016. Nutritional characteristics of forage grown in south of Benin. Asian-Australas. J. Anim. Sci. 29, 51–61, https://doi.org/10.5713/ajas.1....
29. NRC (National Research Council), 1981. Nutrient Requirements of Goats: Angora, Dairy, and Meat Goats in Temperate and Tropical Countries. The National Academies Press. Washington, DC (USA), https://doi.org/10.17226/30.
30. NRC (National Research Council), 2001. Nutrient Requirements of Dairy Cattle. 7th Revised Edition. The National Academies Press. Washington, DC (USA), https://doi.org/10.17226/9825.
31. Ørskov E.R., McDonald I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92, 499–503, https://doi.org/10.1017/S00218....
32. Osoro K., Ferreira L.M.M., García U., Martínez A., Celaya R., 2017. Forage intake, digestibility and performance of cattle, horses, sheep and goats grazing together on an improved heathland. Anim. Prod. Sci. 57, 102–109, https://doi.org/10.1071/AN1515....
33. Ramos S., Molina Alcaide E., Cantalapiedra-Híjar G., Yáñez Ruiz D.R., Tejido M.L., Carro M.D., 2011. Digestibility and ruminal fermentation of diets differing in forage type and forage to concentrate ratio in sheep and goats. In: M.J. Ranilla, M.D. Carro, H. Ben Salem, P. Morand-Fehr (Editors). Challenging Strategies to Promote the Sheep and Goat Sector in the Current Global Context (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 99). CIHEAM/ CSIC/ Universidad de León/ FAO, Zaragoza (Spain), pp. 41–46.
34. Traxler M.J., Fox D.G., Van Soest P.J., Pell A.N., Lascano C.E., Lanna D.P.D., Moore J.E., Lana R.P., Vélez M., Flores A., 1998. Predicting forage indigestible NDF from lignin concentration. J. Anim. Sci. 76, 1469–1480, https://doi.org/10.2527/1998.7....
35. Tuteja N., 2007. Mechanisms of high salinity tolerance in plants. Methods Enzymol. 428, 419–438, https://doi.org/10.1016/S0076-....
36. Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597, https://doi.org/10.3168/jds.S0....
37. Wang L., Xu Q., Kong F., Yang Y., Wu D., Mishra S., Li Y., 2016. Exploring the goat rumen microbiome from seven days to two years. PLoS ONE 11, e0154354, https://doi.org/10.1371/journa....
38. Wang Y., McAllister T.A., 2002. Rumen microbes, enzymes and feed digestion – a review. Asian-Australas. J. Anim. Sci. 15, 1659–1676, https://doi.org/10.5713/ajas.2....
ISSN:1230-1388