0.917
IF5
1.024
IF
Q2
JCR
0.90
CiteScore
0.385
SJR
Q2
SJR
20
MNiSW
142.18
ICV
ORIGINAL PAPER
 
CC-BY 4.0
 
 

Selenium supplementation into diets containing carnosic acid, fish and rapeseed oils affects the chemical profile of whole blood in lambs

M. Czauderna 1  ,  
M. Białek 1,  
 
1
The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
2
University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre Żwirki i Wigury 101, 02-089 Warsaw, Poland
J. Anim. Feed Sci. 2017;26(3):192–203
Publish date: 2017-09-18
KEYWORDS:
TOPICS:
ABSTRACT:
The concentration of macro and trace elements, fatty acids (FAs), vitamins, total cholesterol (TCh) in blood as well as in other tissues can be modulated by diet composition. Thus, the purpose of the present study was to evaluate the effects of fish oil (FO), carnosic acid (CA) and selenized-yeast (SeY) or selenate (SeVI) on concentration of FAs, TCh, α-tocopherol (αT) and selected elements in whole blood of lambs. Thirty male lambs were allocated into 5 groups of 6 animals each and fed for 35 days the following diets: control – basal diet (BD) with 3% rapeseed oil (RO), ROFO – BD with 2% RO and 1% FO, CA – BD with 2% RO, 1% FO and 0.1% CA, CASeY – BD with 2% RO, 1% FO, 0.1% CA and 0.35 mg Se as selenized-yeast (SeY) per kg of BD and CASeVI – BD with 2% RO, 1% FO, 0.1% CA and 0.35 mg Se as sodium selenate (SeVI) per kg of BD. In animals fed CASeVI diet the levels of saturated (SFAs), mono- and polyunsaturated FAs, thrombogenic-SFAs and atherogenic- SFAs decreased in comparison to the control group. On the other hand, in lambs fed CASeY diet the concentration of TCh in blood increased in comparison to lambs fed CA and CASeVI diets. Moreover, feeding CASeY diet also enhanced the concentration of αT in blood as compared to the animals fed ROFO and CASeVI diets. The lowest αT concentration in blood was noted in blood of lambs fed CASeVI diet. Feeding diets supplemented with SeY or SeVI increased the concentrations of Se and malondialdehyde in blood in comparison to other diets. So, the whole blood can be treated as the valuable non-invasive marker for evaluation of ruminant health status and nutritional quality of ruminant feeds.
CORRESPONDING AUTHOR:
M. Czauderna   
The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
 
REFERENCES:
1. Adili N., Melizi M., 2014. Preliminary study of the influence of red blood cells morphometry on the species determinism of domestic animals. Vet. World 7, 219–223, https://doi.org/10.14202/vetworld.2014.219-223.
2. AOAC International, 2005. Official Methods of Analysis of AOAC International. 18th Edition. Gaithersburg, MD (USA).
3. Birtić S., Dussort P., Pierre F.-X., Bily A.C., Roller M., 2015. Carnosic acid. Phytochemistry 115, 9–19, https://doi.org/10.1016/j.phytochem.2014.12.026.
4. Czauderna M., Kowalczyk J., Krajewska K.A., Leng L’., 2010. Selenite, selenized yeast, or conjugated linoleic acid isomers supplemented to the diet influence the fatty acid profile in the spleen and blood plasma of rats. J. Anim. Feed Sci. 19, 613–627, https://doi.org/10.22358/jafs/66335/2010.
5. Czauderna M., Kowalczyk J., Marounek M., 2011. The simple and sensitive measurement of malondialdehyde in selected specimens of biological origin and some feed by reversed phase high performance liquid chromatography. J. Chromatogr. B, 879, 2251–2258, https://doi.org/10.1016/j.jchromb.2011.06.008.
6. Czauderna M., Kowalczyk J., Marounek M., 2012. Dietary linseed oil and selenate affect the concentration of fatty acids in selected tissues of sheep. Czech J. Anim. Sci. 57, 389–401.
7. Czauderna M., Kowalczyk J., Niedźwiedzka K.M., 2009b. Simple HPLC analysis of tocopherols and cholesterol from specimens of animal origin. Chem. Anal. Warsaw 54, 203–214.
8. Czauderna M., Kowalczyk J., Niedźwiedzka K.M., Leng L., Cobanova K., 2009a. Dietary selenized yeast and CLA isomer mixture affect fatty- and amino acid concentrations in the femoral muscles and liver of rats. J. Anim. Feed Sci. 18, 348–361, https://doi.org/10.22358/jafs/66399/2009.
9. Eun J.S., Davis T.Z., Vera J.M., Miller D.N., Panter K.E., ZoBell D.R., 2013. Addition of high concentration of inorganic selenium in orchardgrass (Dactylis glomerata L.) hay diet does not interfere with microbial fermentation in mixed ruminal microorganisms in continuous cultures. Prof. Anim. Sci. 29, 39–45, https://doi.org/10.15232/S1080-7446(15)30193-5.
10. Gailer J., 2002. Review: Reactive selenium metabolites as targets of toxic metals/metalloids in mammals: a molecular toxicological perspective. Appl. Organometal. Chem. 16, 701–707, https://doi.org/10.1002/aoc.376.
11. Jameson R.R., Diamond A.M., 2004. A regulatory role for Sec tRNA[Ser]Sec in selenoprotein synthesis. RNA 10, 1142–1152, https://doi.org/10.1261/rna.7370104.
12. Jones M.L., Allison R.W., 2007. Evaluation of the ruminant complete blood cell count. Vet. Clin. North Am. Food Anim. Pract. 23, 377–402, https://doi.org/10.1016/j.cvfa.2007.07.002.
13. Juniper D.T., Phipps R.H., Ramos-Morales E., Bertin G., 2008. Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on selenium tissue distribution and meat quality in beef cattle. J. Anim. Sci. 86, 3100–3109, https://doi.org/10.2527/jas.2007-0595.
14. Kincaid R.L., 1999. Assessment of trace mineral status of ruminants: A review. Proc. Am. Soc. Anim. Sci. 1999, 1–10.
15. Kurek E., Ruszczyńska A., Wojciechowski M., Czauderna M., Bulska E., 2009. Study on speciation of selenium in animal tissues using high performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry. Chem. Anal. Warsaw 54, 43–57.
16. McDowell L.R., Davis P.A., Cristaldi L.A., Wilkinson N.S., Buergelt C.D., Van Alstyne R., 2005. Toxicity of selenium: Fear or precaution? Feedstuffs 77 (22), 12–13.
17. Miltko R., Rozbicka-Wieczorek J.A., Więsyk E., Czauderna M., 2016. The influence of different chemical forms of selenium added to the diet including carnosic acid, fish oil and rapeseed oil on the formation of volatile fatty acids and methane in rumen and fatty acid profiles in the rumen content and muscles of lambs. Acta Vet. Beograd 66, 373–391, https://doi.org/10.1515/acve-2016-0032.
18. Morán L., Giráldez F.J., Panseri S., Aldai N., Jordán M.J., Chiesa L.M., Andrés S., 2013. Effect of dietary carnosic acid on the fatty acid profile and flavour stability of meat from fattening lambs. Food Chem. 138, 2407–2414, https://doi.org/10.1016/j.foodchem.2012.12.033.
19. Navarro-Alarcon M., Cabrera-Vique C., 2008. Selenium in food and the human body: A review. Sci. Total Environ. 400, 115–141, https://doi.org/10.1016/j.scitotenv.2008.06.024.
20. Niedźwiedzka M.K., Kowalczyk J., Czauderna M., 2008. Influence of selenate and linseed oil on fatty-acid and amino-acid profiles in the liver, muscles, fat tissues and blood plasma of sheep. J. Anim. Feed Sci. 17, 328–343, https://doi.org/10.22358/jafs/66612/2008.
21. Orth M., Bellosta S., 2012. Cholesterol: its regulation and role in central nervous system disorders. Cholesterol 2012, 292598, https://doi.org/10.1155/2012/292598.
22. Raymond L.J., Deth R.C., Ralston N.V.C., 2014. Potential role of selenoenzymes and antioxidant metabolism in relation to autism etiology and pathology. Autism Res. Treat. 2014, 164938, https://doi.org/10.1155/2014/164938.
23. Risé P., Eligini S., Ghezzi S., Colli S., Galli C., 2007. Fatty acid composition of plasma, blood cells and whole blood: Relevance for the assessment of the fatty acid status in humans. Prostaglandins Leukot. Essent. Fatty Acids 76, 363–369, https://doi.org/10.1016/j.plefa.2007.05.003.
24. Rozbicka-Wieczorek A.J., Czauderna M., Więsyk E., Radzik-Rant A., 2016a. Selenium species in diet containing carnosic acid, fish and rapeseed oils affect fatty acid profiles in lamb muscles. J. Anim. Feed Sci. 25, 216–225, https://doi.org/10.22358/jafs/65555/2016.
25. Rozbicka-Wieczorek J.A., Krajewska-Bienias K.A., Czauderna M., 2016b. Dietary carnosic acid, selenized yeast, selenate and fish oil affected the concentration of fatty acids, tocopherols, cholesterol and aldehydes in the brains of lambs. Arch. Anim. Breed. 59, 215–226, https://doi.org/10.5194/aab-59-215-2016.
26. Rozbicka-Wieczorek A.J., Więsyk E., Brzóska F., Śliwiński B., Kowalczyk J., Czauderna M., 2014. Efficiency of fatty acid accumulation into breast muscles of chickens fed diets with lycopene, fish oil and different chemical selenium forms. Afr. J. Biotechnol. 13, 1604–1613, https://doi.org/10.5897/AJB2013.13275.
27. Rozbicka-Wieczorek A.J., Więsyk E., Krajewska-Bienias K.A., Wereszka K., Czauderna M., 2016c. Supplementation effects of seleno-compounds, carnosic acid, and fish oil on concentrations of fatty acids, tocopherols, cholesterol, and amino acids in the livers of lambs. Turk. J. Vet. Anim. Sci. 40, 681–693, https://doi.org/10.3906/vet-1509-12.
28. Ruszczyńska A., Rutkowska D., Bulska E., Czauderna M., 2016. Effects of carnosic acid, fish oil and seleno-compounds on the level of selenium and fatty acids in lamb muscles. In: Proceedings of XLV Scientific Session of Group of Animal Nutrition KNZiA-PAN Olsztyn (Poland), pp. 90–91.
29. Skeaff C.M., Hodson L., McKenzie J.E., 2006. Dietary-induced changes in fatty acid composition of human plasma, platelet, and erythrocyte lipids follow a similar time course. J. Nutr. 136, 565–569.
30. Stranges S., Laclaustra M., Ji C., Cappuccio F.P., Navas-Acien A., Ordovas J.M., Rayman M., Guallar E., 2010. Higher selenium status is associated with adverse blood lipid profile in British adults. J. Nutr. 140, 81–87, https://doi.org/10.3945/jn.109.111252.
31. Strzetelski J.A., Brzóska F., Kowalski Z.M., Osięgłowski S., 2014. Feeding Recommendation for Ruminants and Feed Tables (in Polish). National Research Institute of Animal Production, Kraków (Poland), pp. 392.
32. University of Warwick, 2009. Too much selenium can increase your cholesterol. Science Daily, 13 November 2009, www.sciencedaily.com/releases/2009/11/091112103417.htm.
33. Wąsowska I., Maia M.R.G., Niedźwiedzka K.M., Czauderna M., Ramalho Ribeiro J.M.C., Devillard E., Shingfield K.J., Wallace R.J., 2006. Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Br. J. Nutr. 95, 1199–1211, https://doi.org/10.1079/BJN20061783.
34. Wolin M.J., 1979. The rumen fermentation: a model for microbial interactions in anaerobic ecosystems. In: M. Alexander (Editor). Advances in Microbial Ecology. Volume 3. Plenum Press. New York, NY (USA), pp. 49–77, https://doi.org/10.1007/978-1-4615-8279-3_2.
35. Yang C.-M.J., 2014. Response of forage fiber degradation by ruminal microorganisms to branched-chain volatile fatty acids, amino acids, and dipeptides. J. Dairy Sci. 85, 1183–1190, https://doi.org/10.3168/jds.S0022-0302(02)74181-7.
ISSN:1230-1388