CC-BY 4.0

Selected physiological activities and health promoting properties of cereal beta-glucans. A review

D. Suchecka 1,  
E. Żyła 1,  
J. P. Harasym 2,  
Warsaw University of Life Sciences – SGGW, Faculty of Human Nutrition and Consumer Sciences, Department of Dietetics, Nowoursynowska 159C, 02-776 Warsaw, Poland
Wrocław University of Economics, Institute of Chemistry and Food Technology, Department of Biotechnology and Food Analysis, Komandorska 118/120, 53-345 Wrocław, Poland
J. Anim. Feed Sci. 2017;26(3):183–191
Publish date: 2017-05-30
Cereal beta-glucans are linear homoglucose polymers found in endosperm and sub-aleurone layer of grain, consisting mostly of water-soluble fraction and exerting different specific biological activities. In this review beneficial effects of oat and barley purified beta-glucans on immunity, gastrointestinal tract health and inflammatory diseases treatment in animals are presented. Oat and barley beta-glucans interact with innate immune system cells and affect pro- and anti-inflammatory cytokines production leading to alleviation of inflammation. Few recent in vitro and in vivo studies showed also a prebiotic effect of cereal beta-glucans due to fermentation of these polysaccharides by beneficial gut microbiota. Barley and oat beta-glucans stimulate growth of Lactobacilli and positively affect large intestine content of short-chain fatty acids, faecal water content, pH value and decrease ammonia level in animals. Studies on farm animals, especially pigs, show that cereal beta-glucans can beneficially affect gastrointestinal tract functions and immunity of animals mainly due to their prebiotic activity and interactions with immune cell system. Beta-glucans tend to reduce body weight gain and may help to prevent obesity. The health-promoting properties of barley and oat beta-glucans should be taken into account when formulating diets for farm and companion animals.
J. Gromadzka-Ostrowska   
Warsaw University of Life Sciences – SGGW, Faculty of Human Nutrition and Consumer Sciences, Department of Dietetics, Nowoursynowska 159C, 02-776 Warsaw, Poland
1. Arena M.P., Caggianiello G., Fiocco D., Russo P., Torelli M., Spano G., Capozzi V., 2014. Barley β-glucans-containing food enhances probiotic performances of beneficial bacteria. Int. J. Mol. Sci. 15, 3025–3039, https://doi.org/10.3390/ijms15023025.
2. Arena M.P., Russo P., Capozzi V., Rascón A., Felis G.E., Spano G., Fiocco D., 2016. Combinations of cereal β-glucans and probiotics can enhance the anti-inflammatory activity on host cells by a synergistic effect. J. Funct. Food. 23, 12–23, https://doi.org/10.1016/j.jff.2016.02.015.
3. Baert K., Sonck E., Goddeeris B.M., Devriendt B., Cox E., 2015. Cell type-specific differences in β-glucan recognition and signalling in porcine innate immune cells. Dev. Comp. Immunol. 48, 192–203, https://doi.org/10.1016/j.dci.2014.10.005.
4. Beer M.U., Wood P.J., Weisz J., Fillion N., 1997. Effect of cooking and storage on the amount and molecular weight of (1→3) (1→4)-β-D-glucan extracted from oat products by an in vitro digestion system. Cereal Chem. 74, 705–709, https://doi.org/10.1094/CCHEM.1997.74.6.705.
5. Beeren S.R., Christensen C.E., Tanaka H., Jensen M.G., Donaldson I., Hindsgaul O., 2015. Direct study of fluorescently-labelled barley β-glucan fate in an in vitro human colon digestion model. Carbohyd. Polym. 115, 88–92, https://doi.org/10.1016/j.carbpol.2014.08.056.
6. Bermudez-Brito M., Sahasrabudhe N.M., Rösch C., Schols H.A., Faas M.M., de Vos P., 2015. The impact of dietary fibres on dendritic cell responses in vitro is dependent on the differential effects of the fibres on intestinal epithelial cells. Mol. Nutr. Food Res. 59, 698–710, https://doi.org/10.1002/mnfr.201400811.
7. Błaszczyk K., Wilczak J., Harasym J., Gudej S., Suchecka D., Królikowski T., Lange E., Gromadzka-Ostrowska J., 2015. Impact of low and high molecular weight oat beta-glucan on oxidative stress and antioxidant defense in spleen of rats with LPS induced enteritis. Food Hydrocolloids 51, 272–280, https://doi.org/10.1016/j.foodhyd.2015.05.025.
8. Bose N., Wurst L.R., Chan A.S.H. et al., 2014. Differential regulation of oxidative burst by distinct β-glucan-binding receptors and signaling pathways in human peripheral blood mononuclear cells. Glycobiology 24, 379–391, https://doi.org/10.1093/glycob/cwu005.
9. Dongowski G., Huth M., Gebhardt E., Flamme W., 2002. Dietary fibrerich barley products beneficially affect the intestinal tract of rats. J. Nutr. 132, 3704–3714.
10. Dritz S.S., Shi J., Kielian T.L., Goodband R.D., Nelssen J.L., Tokach M.D., Chengappa M.M., Smith J.E., Blecha F., 1995. Influence of dietary β-glucan on growth performance, nonspecific immunity, and resistance to Streptococcus suis infection in weanling pigs. J. Anim. Sci. 73, 3341–3350, https://doi.org/10.2527/1995.73113341x.
11. Drzikova B., Dongowski G., Gebhardt E., 2005. Dietary fibre-rich oatbased products affect serum lipids, microbiota, formation of short-chain fatty acids and steroids in rats. Br. J. Nutr. 94, 1012–1025, https://doi.org/10.1079/BJN20051577.
12. Eicher S.D., Patterson J.A., Rostagno M.H., 2011. β-Glucan plus ascorbic acid in neonatal calves modulates immune functions with and without Salmonella enterica serovar Dublin. Vet. Immunol. Immunopathol. 142, 258–264, https://doi.org/10.1016/j.vetimm.2011.05.014.
13. El Khoury D., Cuda C., Luhovyy B.L., Anderson G.H., 2012. Beta-glucan: health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012, 851362, https://doi.org/10.1155/2012/851362.
14. Estrada A., van Kessel A., Laarveld B., 1999. Effect of administration of oat beta-glucan on immune parameters of healthy and immunosuppressed beef steers. Can. J. Vet. Res. 63, 261–268.
15. Ewaschuk J.B., Johnson I.R., Madsen K.L., Vasanthan T., Ball R., Field C.J., 2012. Barley-derived β-glucans increases gut permeability, ex vivo epithelial cell binding to E. coli, and naïve Tcell proportions in wealing pigs. J. Anim. Sci. 90, 2652–2662, https://doi.org/10.2527/jas.2011-4381.
16. FDA, 2016. Code of Federal Regulation, Title 21, Vol. 2: Food and Drugs. Part 101: Food Labeling. Section 101.81: Health claims: soluble fibre from certain foods and risk of coronary heart disease. 21CFR101.81.
17. Fortin A., Robertson W.M., Kibite S., Landry S.J., 2003. Growth performance, carcass and pork quality of finisher pigs fed oat-based diets containing different levels of β-glucans. J. Anim. Sci. 81, 449–456, https://doi.org/10.2527/2003.812449x.
18. Grove A.V., Kaiser C.R., Iversen N., Hafla A., Robinson B.L., Bowman J.G.P., 2006. Digestibility of barley beta-glucan in cattle. Proc. West. Sect. Am. Soc. Anim. Sci. 57, 367–369
19. Grundy M., Mackie A., Balance S., Rieder A., Wilde P., Dreiss C., Butterworth P., Ellis P., 2016. In vitro mechanistic studies of the cholesterol-lowering property of oat beta-glucan. 1st International Conference on Food Bioactives and Health. Norwich (UK).
20. Haladová E., Mojžišová J., Smrčo P., Ondrejková A., Vojtek B., Prokeš M., Petrovová E., 2011. Immunomodulatory effect of glucan on specific and nonspecific immunity after vaccination in puppies. Acta Vet. Hung. 59, 77–86, https://doi.org/10.1556/AVet.59.2011.1.7.
21. Hamaker B.R., Tuncil Y.E., 2014. A perspective on the complexity of dietary fibre structures and their potential effect on the gut microbiota. J. Mol. Biol. 426, 3838–3850, https://doi.org/10.1016/j.jmb.2014.07.028.
22. Harland J., 2014. Authorised EU health claims for barley and oat betaglucans. In: M.J. Sadler (Editor). Foods, Nutrients and Food Ingredients with Authorised EU Health Claims. Woodhead Publishing Limited. Sawston (UK), pp. 25–45, https://doi.org/10.1533/9780857098481.2.25.
23. He L.-x., Zhao J., Huang Y.-s., Li Y., 2016. The difference between oats and beta-glucan extract intake in the management of HbA1c, fasting glucose and insulin sensitivity: a meta-analysis of randomized controlled trials. Food Funct. 7, 1413–1428, https://doi.org/10.1039/C5FO01364J.
24. Hiss S., Sauerwein H., 2003. Influence of dietary β-glucan on growth performance, lymphocyte proliferation, specific immune response and haptoglobin plasma concentrations in pigs. J. Anim. Physiol. Anim. Nutr. 87, 2–11, https://doi.org/10.1046/j.1439-0396.2003.00376.x.
25. Holtekjølen A.K., Vhile S.G., Sahlstrøm S., Knutsen S.H., Uhlen A.K., Åssveen M., Kjos N.P., 2014. Changes in relative molecular weight distribution of soluble barley beta-glucan during passage through the small intestine in pigs. Livest. Sci. 168, 102–108, https://doi.org/10.1016/j.livsci.2014.06.027.
26. Hong F., Yan J., Baran J.T., Allendorf D.J., Hansen R.D., Ostroff G.R., Xing P.X., Cheung N.-K.V., Ross G.D., 2004. Mechanism by which orally administered β-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol. 173, 797–806, https://doi.org/10.4049/jimmunol.173.2.797.
27. Hu X., Zhao J., Zhao Q., Zheng J., 2015. Structure and characteristic of β-glucan in cereal: a review. J. Food Process. Preserv. 39, 3145–3152, https://doi.org/10.1111/jfpp.12384.
28. Jha R., Rossnagel B., Pieper R., Van Kessel A., Leterme P., 2010. Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets. Animal 4, 724–731, https://doi.org/10.1017/S1751731109991510.
29. Johansson L., Karesoja M., Ekholm P., Virrki L., Tenhu H., 2008. Comparison of solution properties of (1→3),(1→4)-β-D-glucans extracted from oats and barley. LWT – Food Sci. Technol. 41, 180–184, https://doi.org/10.1016/j.lwt.2007.01.012.
30. Lærke H.N., Mikkelsen L.S., Jørgensen H., Jensen S.K., 2014. Effect of β-glucan supplementation on acute postprandial changes in fatty acid profile of lymph and serum in pigs. Int. J. Mol. Sci. 15, 13881–13891, https://doi.org/10.3390/ijms150813881.
31. Lazaridou A., Biliaderis C.G., 2007. Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects. J. Cereal Sci. 46, 101–118, https://doi.org/10.1016/j.jcs.2007.05.003.
32. Lazaridou A., Biliaderis C.G., Izydorczyk M.S., 2007. Cereal β-glucans: structure, physical properties and physiological functions. In: C.G. Biliaderis, M.S. Izydorczyk (Editors). Functional Food Carbohydrates. CRC Press. Boca Raton, FL (USA), pp. 1–72.
33. Lazaridou A., Serafeimidou A., Biliaderis C.G., Moschakis T., Tzanetakis N., 2014. Structure development and acidification kinetics in fermented milk containing oat β-glucan, a yogurt culture and a probiotic strain. Food Hydrocolloids 39, 204–214, https://doi.org/10.1016/j.foodhyd.2014.01.015.
34. Le Goff G., Noblet J., Cherbut C., 2003. Intrinsic ability of the faecal microbial flora to ferment dietary fibre at different growth stages of pigs. Livest. Prod. Sci. 81, 75–87, https://doi.org/10.1016/S0301-6226(02)00191-4.
35. Metzler-Zebeli B.U., Zebeli Q., 2013. Cereal β-glucan alters nutrient digestibility and microbial activity in the intestinal tract of pigs, and lower manure ammonia emission: a meta-analysis. J. Anim. Sci. 91, 3188–3199, https://doi.org/10.2527/jas.2012-5547.
36. Metzler-Zebeli B.U., Zijlstra R.T., Mosenthin R., Gänzle M.G., 2011. Dietary calcium phosphate content and oat β-glucan influence gastrointestinal microbiota, butyrate-producing bacteria and butyrate fermentation in weaning pigs. FEMS. Microbiol. Ecol. 75, 402–413, https://doi.org/10.1111/j.1574-6941.2010.01017.x.
37. Mikkelsen M.S., Jespersen B.M., Mehlsen A., Engelsen S.B., Frøkiær H., 2014. Cereal β-glucan immune modulating activity depends on the polymer fine structure. Food Res. Int. 62, 829–836, https://doi.org/10.1016/j.foodres.2014.04.021.
38. Mitsou E.K., Panopoulou N., Turunen K., Spiliotis V., Kyriacou A., 2010. Prebiotic potential of barley derived β-glucan at low intake levels: A randomised, double-blinded, placebo-controlled clinical study. Food Res. Int. 43, 1086–1092, https://doi.org/10.1016/j.foodres.2010.01.020.
39. Murphy P., Bello F.D., O’Doherty J.V., Arendt E.K., Sweeney T., Coffey A., 2012. Effects of cereal β-glucans and enzyme inclusion on the porcine gastrointestinal tract microbiota. Anaerobe 18, 557–565, https://doi.org/10.1016/j.anaerobe.2012.09.005.
40. Noss I., Doekes G., Thorne P.S., Heederik D.J.J., Wouters I.M., 2013. Comparison of the potency of a variety of β-glucans to induce cytokine production in human whole blood. Innate Immun. 19, 10–19, https://doi.org/10.1177/1753425912447129.
41. O’Shea C.J, Sweeney T., Lynch M.B., Gahan D.A., Callan J.J., O’Doherty J.V., 2010. Effect of β-glucans contained in barleyand oat-based diets and exogenous enzyme supplementation on gastrointestinal fermentation of finisher pigs and subsequent manure odor and ammonia emissions. J. Anim. Sci. 88, 1411–1420, https://doi.org/10.2527/jas.2009-2115.
42. Palma A.S., Liu Y., Zhang H. et al., 2015. Unravelling glucan recognition systems by glycome microarrays using the designer approach and mass spectrometry. Mol. Cell. Proteomics 14, 974–988, https://doi.org/10.1074/mcp.M115.048272.
43. Pieper R., Jha R., Rossnagel B., Van Kessel A.G., Souffrant W.B., Leterme P., 2008. Effect of barley and oat cultivars with different carbohydrate compositions on the intestinal bacterial communities in weaning piglets. FEMS Micriobiol. Ecol. 66, 556–566, https://doi.org/10.1111/j.1574-6941.2008.00605.x.
44. Russo P., de Chiara M.L.V., Capozzi V., Arena M.P., Amodio M.L., Rascón A., Dueñas M.T., López P., Spano G., 2016. Lactobacillus plantarum strains for multifunctional oat-based foods. LWT – Food Sci. Technol. 68, 288–294, https://doi.org/10.1016/j.lwt.2015.12.040.
45. Shen R.-L., Dang X.-Y., Dong J.-L., Hu X.-Z., 2012. Effects of oat β-glucan and barley β-glucan on fecal characteristics, intestinal microflora, and intestinal bacterial metabolites in rats. J. Agric. Food Chem. 60, 11301–11308, https://doi.org/10.1021/jf302824h.
46. Shinkai H., Toki D., Okumura N., Takenouchi T., Kitani H., Uenishi H., 2016. Polymorphisms of the immune-modulating receptor dectin-1 in pigs: their functional influence and distribution in pig populations. Immunogenetics 68, 275–284, https://doi.org/10.1007/s00251-016-0900-7.
47. Siurek B., Rosicka-Kaczmarek J., Nebesny E., 2012. Bioactive compounds in cereal grains – occurrence, structure, technological and nutritional benefits – a review. Food Sci. Technol. Int. 18, 559–568, https://doi.org/10.1177/1082013211433079.
48. Skendi A., Biliaderis C.G., Lazaridou A., Izydorczyk M.S., 2003. Structure and rheological properties of water soluble β-glucans from oat cultivars of Avena sativa and Avena bysantina. J. Cereal Sci. 38, 15–31, https://doi.org/10.1016/S0733-5210(02)00137-6.
49. Snart J., Bibiloni R., Grayson T. et al., 2006. Supplementation of the diet with high-viscosity beta-glucan results in enrichment for Lactobacilli in the rat cecum. Appl. Environ. Microbiol. 72, 1925–1931, https://doi.org/10.1128/AEM.72.3.1925-1931.2006.
50. Sonck E., Stuyven E., Goddeeris B., Cox E., 2009. Identification of the porcine C-type lectin dectin-1. Vet. Immunol. Immunopathol. 130, 131–134, https://doi.org/10.1016/j.vetimm.2009.01.010.
51. Stuyven E., Verdonck F., Van Hoek I., Daminet S., Duchateau L., Remon J.P., Goddeeris B.M., Cox E., 2010. Oral administration of β-1,3/1,6-glucan to dogs temporally changes total and antigen-specific IgA and IgM. Clin. Vaccine Immunol. 17, 281–285, https://doi.org/10.1128/CVI.00344-09.
52. Suchecka D., Harasym J., Wilczak J., Gromadzka-Ostrowska J., 2016. Hepato- and gastro-protective activity of purified oat 1-3, 1-4-β-D-glucans of different molecular weight. Int. J. Biol. Macromol. 91, 1177–1185, https://doi.org/10.1016/j.ijbiomac.2016.06.062.
53. Tada R., Ikeda F., Aoki K., Yoshikawa M., Kato Y., Adachi Y., Tanioka A., Ishibashi K.-i., Tsubaki K., Ohno N., 2009. Barley-derived β-D-glucan induces immunostimulation via a dectin-1-mediated pathway. Immunol. Lett. 123, 144–148, https://doi.org/10.1016/j.imlet.2009.03.005.
54. Uchiyama H., Iwai A., Asada Y. et al., 2015. A small scale study on the effects of oral administration of the β-glucan produced by Aureobasidium pullulans on milk quality and cytokine expressions of Holstein cows, and on bacterial flora in the intestines of Japanese black calves. BMC Res. Notes 5, 189, https://doi.org/10.1186/1756-0500-5-189.
55. Vasiljevic T., Kealy T., Mishra V.K., 2007. Effects of β-glucan addition to a probiotic containing yogurt. J. Food Sci. 72, C405–C411, https://doi.org/10.1111/j.1750-3841.2007.00454.x.
56. Vetvicka V., Vannucci L., Sima P., 2014. The effects of β-glucan on pig growth and immunity. Open Biochem. J. 8, 89–93, https://doi.org/10.2174/1874091X01408010089.
57. Wilczak J., Błaszczyk K., Kamola D., Gajewska M., Harasym J.P., Jałosińska M., Gudej S., Suchecka D., Oczkowski M., Gromadzka-Ostrowska J., 2015. The effect of low or high molecular weight oat beta-glucans on the inflammatory and oxidative stress status in the colon of rats with LPS-induced enteritis. Food Funct. 6, 590–603, https://doi.org/10.1039/C4FO00638K.
58. Willcocks S., Yamakawa Y., Stalker A., Coffey T.J., Goldammer T., Werling D., 2006. Identification and gene expression of the bovine C-type lectin dectin-1. Vet. Immunol. Immunopathol. 113, 234–242, https://doi.org/10.1016/j.vetimm.2006.04.007.
59. Zheng X., Zou S., Xu H., Liu Q., Song J., Xu M., Xu X., Zhang L., 2016. The linear structure of β-glucan from baker’s yeast and its activation of macrophage-like RAW264.7 cells. Carbohydr. Polym. 148, 61–68, https://doi.org/10.1016/j.carbpol.2016.04.044.
60. Zhou H., Hu J., Luo Y., Hickford J.G.H., 2010. Variation in the ovine C-type lectin dectin-1 gene (CLEC7A). Dev. Comp. Immunol. 34, 246–249, https://doi.org/10.1016/j.dci.2009.11.002.