0.857
IF5
0.900
IF
Q3
JCR
0.92
CiteScore
0.405
SJR
Q2
SJR
20
MNiSW
165.24
ICV
ORIGINAL PAPER
 
CC-BY 4.0
 
 

Expression of 3β-hydroxysteroid dehydrogenase and P450 aromatase in porcine oviduct during the oestrous cycle

M. Martyniak 1,  
K. Zglejc 1,  
A. Franczak 1,  
G. Kotwica 1  
 
1
University of Warmia and Mazury in Olsztyn, Department of Animal Physiology, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
J. Anim. Feed Sci. 2016;25(3):235–243
Publish date: 2016-08-25
KEYWORDS
ABSTRACT
Steroid hormones regulate the oviductal functions in cyclic pigs. The mRNA and protein steroidogenic enzymes expression – 3β-hydroxysteroid dehydrogenase (HSD3B), encoded by HSD3B and P450 aromatase (P450arom), encoded by CYP19, were studied in ampulla and isthmus of pig oviducts during luteal (days 2 - 3, 10 - 11 and 15 - 16) and follicular (days 18 - 20) phase. Expression of HSD3B in ampulla was greater on days 2 - 3, 12 - 13 and 18 - 20 vs 10 - 11 and 15 - 16. In isthmus it was greater on days 2 - 3 vs 10 - 11 and on days 18 - 20 vs 10 - 11 to 15 - 16. Proteins were immunolocalized in epithelial cells of ampulla and isthmus. On days 15 - 16, HSD3B concentration in ampulla was the greatest, in isthmus it was greater on days 15 - 16 vs 12 - 13. The P450arom protein expression was the greatest on days 2 - 3 in ampulla and isthmus and thereafter it gradually declined toward the end of the oestrous cycle. Progesterone concentration (pg · ml–1) in oviductal flushings did not change from days 2 - 3 (960.2 ± 367.2) to 15 - 16 (543.4 ± 235.3), but decreased on days 18 - 20 (154.5 ± 34.8). Androstenedione concentration (pg · ml–1) on days 2 - 3 (726.4 ± 108.4) and 18 - 20 (701.0 ± 59.0), and oestradiol-17β (pg · ml–1) levels on days 12-13 (104.1 ± 9.6) and 18-20 (110.4 ± 14.4) were greater than on other days. This study showed, that expression of mRNA and proteins of steroidogenic enzymes in oviduct of cyclic pigs depends on the stage of the oestrous cycle. This observation suggests ability of porcine oviduct to de novo synthesize steroid hormones.
CORRESPONDING AUTHOR
G. Kotwica   
University of Warmia and Mazury in Olsztyn, Department of Animal Physiology, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland
 
REFERENCES (30):
1. Brüssow K.-P., Rátky J., Rodriguez-Martinez H., 2008. Fertilization and early embryonic development in the porcine fallopian tube. Reprod. Domest. Anim. 43, 245–251.
2. Buhi W.C., 2002. Characterization and biological roles of oviductspecific, estrogen-dependent glycoprotein. Reproduction 123, 355–362.
3. Carrasco L.C., Romar R., Avilés M., Gadea J., Coy P., 2008. Determination of glycosidase activity in porcine oviductal fluid at the different phases of the estrous cycle. Reproduction 136, 833–842.
4. Chen S., Einspanier R., Schoen J., 2013. In vitro mimicking of estrous cycle stages in porcine oviduct epithelium cells: estradiol and progesterone regulate differentiation, gene expression, and cellular function. Biol. Reprod. 89, 54, 1–12.
5. Ciereszko R., 1999. Radioimmunoassay of steroid hormones in biological fluids (in Polish). In: J Przała (Editor). Animal Physiology. Demonstration and Methods. UWM Press, Olsztyn (Poland), pp. 157–163.
6. Dziekoński M., ŻmijewskaA., FranczakA., Kotwica G., Czelejewska W., Okrasa S., 2015. The expression of mRNAs for opioid precursors in endometrium of cyclic and early pregnant pigs; effects of IL-1β, IL-6 and TNFα. J. Anim. Feed Sci. 24, 118–126.
7. Franczak A., 2008. Endometrial and myometrial secretion of androgens and estrone during early pregnancy and luteolysis in pigs. Reprod. Biol. 8, 213–228.
8. Franczak A., Kotwica G., 2010. Androgens and estradiol-17β production by porcine uterine cells: In vitro study. Theriogenology 73, 232–241.
9. Franczak A., Wojciechowicz B., Kolakowska J., Kotwica G., 2014. The effect of interleukin-1β, interleukin-6, and tumor necrosis factor-α on estradiol-17β release in the myometrium: The in vitro study on the pig model. Theriogenology 81, 266–274.
10. Georgiou A.S., Sostaric E., Wong C.H., Snijders A.P.L., Wright P.C., Moore H.D., Fazeli A., 2005. Gametes alter the oviductal secretory proteome. Mol. Cell. Proteomics 4, 1785–1796.
11. Gleeson A.R., Thorburn G.D., 1973. Plasma progesterone and prostaglandin F concentrations in the cyclic sows. J. Reprod. Fertil. 32, 343–344.
12. Goossens K., Van Poucke M., Van Soom A., Vandesompele J., Van Zeveren A., Peelman L.J., 2005. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev. Biol. 5, 27, doi:10.1186/1471-213X-5-27.
13. Graddy L.G., KowalskiA.A., Simmen F.A., Davis S.L.F., BaumgartnerW.W., Simmen R.C.M., 2000. Multiple isoforms of porcine aromatase are encoded by three distinct genes. J. Steroid Biochem. Mol. Biol. 73, 49–57.
14. Hunter R.H.F., 1974. Chronological and cytological details of fertilization and early embryonic development in the domestic pigs, Sus scrofa. Anat. Rec. 178, 169–185.
15. Hunter R.H.F., 1991. Oviduct function in pigs, with particular reference to the pathological condition of polyspermy. Mol. Reprod. Dev. 29, 385–391.
16. Hunter R.H.F., 2012. Components of oviduct physiology in eutherian mammals. Biol. Rev. 87, 244–255.
17. Hunter R.H.F., Petersen H.H., Greve T., 1999. Ovarian follicular fluid, progesterone and Ca2+ ion influences on sperm release from the Fallopian tube reservoir. Mol. Reprod. Dev. 54, 283–291.
18. Killian G., 2011. Evidence that oviduct secretions influence sperm functions: A retrospective view for livestock. J. Anim. Sci. 89, 1315-1322.
19. LaVoie H.A., King S.R., 2009. Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Exp. Biol. Med. 243, 880–907.
20. Li Y., Qin L., Xiao Z.-J., Wang Y.-L., Herva R., Leng J.-H., Lang J.-H., Isomaa V., Piao Y.-S., 2003. Expression of P450 aromatase and 17β-hydroxysteroid dehydrogenase type 1 at fetal-maternal interface during tubal pregnancy. J. Steroid Biochem. Mol. Biol. 87, 241–246.
21. Nelis H., Bussche V.J., Wojciechowicz B., Franczak A., Vanhaecke L., Leemans B., Cornillie P., Peelman L., Van Soom A., Smits K., 2015a. Steroids in the equine oviduct: synthesis, local concentrations and receptor expression. Reprod. Fert. Develop.doi:10.1071/RD14483.
22. Nelis H., Wojciechowicz B., Franczak A., Leemans B., D’Herde K., Goossens K., Cornillie P., Peelman L., Van Soom A., Smits K., 2015b. Steroids affect gene expression, ciliary activity, glucose uptake, progesterone receptor expression and immunoreactive steroidogenic protein expression in equine oviduct explants in vitro. Reprod. Fert. Develop. doi:10.1071/RD15044.
23. Rekawiecki R., Kowalik M.K., Kotwica J., 2013. Validation of housekeeping genes for studying differential gene expression in the bovine myometrium. Acta Vet. Hung. 61, 505–516.
24. Rodriguez-Martinez H., Einarsson S., Larsson B., Akusu M., Settergren I., 1982. Spontaneous motility of the pig oviduct in vitro. Biol. Reprod. 26, 98–104.
25. Skowronski M.T., Skowronska A., Nielsen S., 2011. Fluctuation of aquaporin 1, 5, and 9 expression in the pig oviduct during the estrous cycle and early pregnancy. J. Histochem. Cytochem. 59, 419–427.
26. Stefańczyk-Krzymowska S., Krzymowski T., 2002. Local adjustment of blood and lymph circulation in the hormonal regulation of reproduction in female pigs - facts, conclusions and suggestions for future research. Reprod. Biol. 2, 115–132.
27. Szafrańska B., Zięcik A., Okrasa S., 2002. Primary antisera against selected steroids or proteins and secondary antisera against γ-globulins – an available tool for studies of reproductive processes. Reprod. Biol. 2, 187–203.
28. Wojciechowicz B., Kotwica G., Kolakowska J., Franczak A., 2013. The activity and localization of 3β-hydroxysteroid dehydrogenase/ Δ5–Δ4 isomerase and release of androstenedione and progesterone by uterine tissues during early pregnanacy and the estrous cycle in pigs. J. Reprod. Dev. 59, 49–58.
29. Wollenhaupt K., Kettler A., Brüssow K.-P., Schneider F., Kanitz W., Einspanier R., 2001. Regulation of the expression and bioactivation of the epidermal growth factor receptor system by estradiol in pig oviduct and endometrium. Reprod. Fert. Develop. 13, 167-176.
30. Yaniz J.L., Lopez-Gatius F., Hunter R.H.F., 2006. Scanning electron microscopic study of the functional anatomy of the porcine oviductal mucosa. Anat. Histol. Embryol. 35, 28–34.
 
CITATIONS (4):
1. Interleukin-1 β system in the oviducts of pigs during the oestrous cycle and early pregnancy
M. Martyniak, A. Franczak, G. Kotwica
Theriogenology
2. Synthesis of steroid hormones in the porcine oviduct during early pregnancy
Marcin Martyniak, Anita Franczak, Genowefa Kotwica
Reproductive Biology
3. The expression profile of AQP1, AQP5 and AQP9 in granulosa and theca cells of porcine ovarian follicles during oestrous cycle and early pregnancy
P. Młotkowska, D. Tanski, M. Eliszewski, A. Skowronska, S. Nielsen, M. Skowronski
Journal of Animal and Feed Sciences
4. Transcriptomic analysis of the oviduct of pigs during the peri-conceptional period
Marcin Martyniak, Kamila Zglejc-Waszak, Anita Franczak, Genowefa Kotwica
Animal Reproduction Science
ISSN:1230-1388