ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Caffeine is a plant alkaloid that stimulates the central nervous system. It easily crosses the blood-brain barrier located in the endothelial cells of brain microvessels and the blood-cerebrospinal fluid barrier located in the epithelial cells of the choroid plexus (ChP). Caffeine exerts most of its biological effects by antagonising adenosine receptors (ADORs), but is also an agonist of ryanodine receptors (RYRs). A recent study in a sheep model has suggested that the effect of caffeine on the expression of many genes may depend on the animal’s immune status. Therefore, the aim of the study was to determine the effect of caffeine administration (iv, 30 mg/kg) in ewes, under basal and acute inflammatory conditions induced by lipopolysaccharide injection (iv, 400 ng/kg), on the expression of ADOR and RYR genes in the mediobasal hypothalamus (MBH), anterior pituitary (AP), and ChP. Our study showed that among caffeineinteracting receptors, ADORA1 was the most highly expressed in the AP and ChP, while ADORA3 in the MBH. Caffeine reduced (P < 0.05) the inhibitory effect of inflammation on ADORA1, but only in the MBH, and decreased (P < 0.05) the stimulatory effect of endotoxin treatment on ADORA2B in the MBH and ChP. In contrast to ADORs, the expression of RYRs was less sensitive to the effects of inflammation and caffeine. We showed that caffeine influenced the expression of its receptor genes in the brain, but this effect seemed to be tissuedependent and could be affected by the immune status of the animals. However, the physiological implications of these results require further detailed studies.
FUNDING
This work was supported by funds granted by the National Science Centre, Poland, based on Decision No. DEC-2017/25/B/NZ9/00225. AS and JS were supported by statutory research funds of the Institute of Animal Reproduction and Food Research.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
 
REFERENCES (35)
1.
Abu-Omar N., Das J., Szeto V., Feng Z.-P., 2018. Neuronal ryanodine receptors in development and aging. Mol. Neurobiol. 55, 1183–1192, doi.org/10.1007/s12035-016-0375-4
 
2.
Buenestado A., Grassin Delyle S., Arnould I., Besnard F., Naline E., Blouquit-Laye S., Chapelier A., Bellamy J.F., Devillier P., 2010. The role of adenosine receptors in regulating production of tumour necrosis factor-alpha and chemokines by human lung macrophages. Br. J. Pharmacol. 159, 1304–1311, doi.org/10.1111/j.1476-5381.2009.00614.x
 
3.
Chen J.F., Lee C.F., Chern Y., 2014. Chapter One – adenosine receptor neurobiology: overview. Int. Rev. Neurobiol. 119, 1–49, doi.org/10.1016/B978-0-12-801022-8.00001-5
 
4.
Cohen S., Fishman P., 2019. Targeting the A3 adenosine receptor to treat cytokine release syndrome in cancer immunotherapy. Drug Des. Devel. Ther. 13, 491–497, doi.org/10.2147/DDDT.S195294
 
5.
Cronstein B.N., Sitkovsky M., 2017. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat. Rev. Rheumatol. 13, 41–51, doi.org/10.1038/nrrheum.2016.178
 
6.
Endesfelder S., Strauß E., Bendix I., Schmitz T., Bührer C., 2020. Prevention of oxygen-induced inflammatory lung injury by caffeine in neonatal rats. Oxid. Med. Cell. Longev. 2020, 3840124, doi.org/10.1155/2020/3840124
 
7.
Fredholm B.B., Ijzerman A.P., Jacobson K.A., Linden J., Muller C.E., 2011. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors –an update. Pharmacol. Rev. 63, 1–34, doi.org/10.1124/pr.110.003285
 
8.
Gamble K.L, Ciarleglio C.M., 2009. Ryanodine receptors are regulated by the circadian clock and implicated in gating photic entrainment. J. Neurosci. 29, 11717–11719, doi.org/10.1523/JNEUROSCI.3820-09.2009
 
9.
Hackett T.A., Guo Y., Clause A., Hackett N.J., Garbett K., Zhang P., Polley D.B., Mirnics K., 2015. Transcriptional maturation of the mouse auditory forebrain. BMC Genomics 16, 606
 
10.
Haziak K., Herman A.P., Tomaszewska-Zaremba D., 2014. Effects of central injection of anti-LPS antibody and blockade of TLR4 on GnRH/LH secretion during immunological stress in anestrous ewes. Mediators Inflamm. 2014, 867170, https://doi.org/10.1155/2014/8...
 
11.
Ikeda-Murakami K., Tani N., Ikeda T., Aoki Y., Ishikawa T., 2022. Central nervous system stimulants limit caffeine transport at the blood-cerebrospinal fluid barrier. Int. J. Mol. Sci. 23, 1862, doi.org/10.3390/ijms23031862
 
12.
Jagannath A., Varga N., Dallmann R. et al., 2021. Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice. Nat. Commun. 12, 2113, doi.org/10.1038/s41467-021-22179-z
 
13.
Karmouty-Quintana H., Xia Y., Blackburn M.R., 2013. Adenosine signaling during acute and chronic disease states. J. Mol. Med. (Berl.). 91, 173–181, doi.org/10.1007/s00109-013-0997-1
 
14.
Kong H., Jones P.P., Koop A., Zhang L., Duff H.J., Chen S.R.W., 2008. Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor. Biochem. J. 414, 441–452, doi.org/10.1042/BJ20080489
 
15.
Kowalewska M., Herman A.P., Szczepkowska A., Skipor J., 2017. The effect of melatonin from slow-release implants on basic and TLR-4-mediated gene expression of inflammatory cytokines and their receptors in the choroid plexus in ewes. Res. Vet. Sci. 113, 50–55, doi.org/10.1016/j.rvsc.2017.09.003
 
16.
Liao J., Zhang S., Yang S. et al., 2021. Interleukin-6-mediated-Ca2+ handling abnormalities contributes to atrial fibrillation in sterile pericarditis rats. Front. Immunol. 12, 758157, doi.org/10.3389/fimmu.2021.758157
 
17.
Lu M., Farnebo L.-O., Bränström R., Larsson C., 2013. Inhibition of parathyroid hormone secretion by caffeine in human parathyroid cells. J. Clin. Endocrinol. Metab. 98, E1345–E1351, https://doi.org/10.1210/jc.201...
 
18.
McCall A.L., Millington W.R., Wurtman R.J., 1982. Blood-brain barrier transport of caffeine: dose-related restriction of adenine transport. Life Sci. 31, 2709–2715, doi.org/10.1016/0024-3205(82)90715-9
 
19.
Modic M.T., Weinstein M.A., Rothner A.D., Erenberg G., Duchesneau P.M., Kaufman B., 1980. Calcification of the choroid plexus visualized by computed tomography. Radiology 135, 369–372, doi.org/10.1148/radiology.135.2.7367628
 
20.
Murphy P.S., Wang J., Bhagwat S.P., Munger J.C., Janssen W.J., Wright T.W., Elliott M.R., 2017. CD73 regulates anti-inflammatory signaling between apoptotic cells and endotoxin-conditioned tissue macrophages. Cell Death Differ. 24, 559–570, doi.org/10.1038/cdd.2016.159
 
21.
Persad L.A.B., 2011. Energy drinks and the neurophysiological impact of caffeine. Front. Neurosci. 5, 116, doi.org/10.3389/fnins.2011.00116
 
22.
Rasmussen R., 2001. Quantification on the LightCycler. In: S. Meuer, C. Wittwer, K.I. Nakagawara (Editors). Rapid Cycle Real-Time PCR. Springer. Berlin (Germany), pp. 21–34, https://doi.org/10.1007/978-3-...
 
23.
Ren T.H., Lv M.M., Am X.M., Leung W.K., Seto W.K., 2020. Activation of adenosine A3 receptor inhibits inflammatory cytokine production in colonic mucosa of patients with ulcerative colitis by down-regulating the nuclear factor-kappa B signaling. J. Dig. Dis. 21, 38–45, https://doi.org/10.1111/1751-2...
 
24.
Ribeiro J.A., Sebastiao A.M., 2010. Caffeine and adenosine. J. Alzheimer’s Dis. 20, S3–S15, doi.org/10.3233/JAD-2010-1379
 
25.
Rouillard A.D., Gundersen G.W., Fernandez N.F., Wang Z., Monteiro C.D., McDermott M.G., Ma'ayan A., 2016. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database. Oxford (UK), pii: baw100, maayanlab.cloud/Harmonizome
 
26.
Schiffmann S.N., Libert F., Vassart G., Vanderhaeghen J.J., 1991. Distribution of adenosine A2 receptor mRNA in the human brain. Neurosci Lett. 130, 177–181, doi.org/10.1016/0304-3940(91)90391-6
 
27.
Sjöstedt E., Zhong W., Fagerberg L. et al., 2020. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367, 6482, doi.org/10.1126/science.aay5947
 
28.
Stamp L.K., Hazlett J., Roberts R.L., Frampton C., Highton J., Hessian P.A., 2012. Adenosine receptor expression in rheumatoid synovium: a basis for methotrexate action. Arthritis Res. Ther. 14, R138, doi.org/10.1186/ar3871
 
29.
Sundaresan S., Weiss J., Bauer-Dantoin A.C., Jameson J.L., 1997. Expression of ryanodine receptors in the pituitary gland: evidence for a role in gonadotropin-releasing hormone signaling. Endocrinology 138, 2056–2065, doi.org/10.1210/endo.138.5.5153
 
30.
Szczepkowska A., Wójcik M., Tomaszewska-Zaremba D., Antushevich H., Krawczyńska A., Wiechetek W., Skipor J., Herman A.P., 2021. Acute effect of caffeine on the synthesis of pro-inflammatory cytokines in the hypothalamus and choroid plexus during endotoxin-induced inflammation in a female sheep model. Int. J. Mol. Sci. 22, 13237, doi.org/10.3390/ijms222413237
 
31.
Van Eps N., Altenbach C., Caro L.N., Latorraca N.R., Hollingsworth S.A., Dror R.O., Ernst O.P., Hubbell W.L., 2018. Gi- and Gs-coupled GPCRs show different modes of G-protein binding. Proc. Natl. Acad. Sci. U.S.A. 115, 2383–2388, doi.org/10.1073/pnas.1721896115
 
32.
Yang D., Zhang Y., Nguyen H.G. et al, 2006. The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J. Clin. Invest. 116, 1913–1923, doi.org/10.1172/JCI27933
 
33.
Yang T., Gao X., Sandberg M. et al., 2015. Abrogation of adenosine A1 receptor signalling improves metabolic regulation in mice by modulating oxidative stress and inflammatory responses. Diabetologia 58, 1610–1620, doi.org/10.1007/s00125-015-3570-3
 
34.
Zhao S., Fernald R.D., 2005. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 12, 1047–1064, doi.org/10.1089/cmb.2005.12.1047
 
35.
Zhao Y., Li M.C., Konaté M.M., Chen L., Das B., Karlovich C., Williams P.M., Evrard Y.A., Doroshow J.H., McShane L.M., 2021. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. J. Transl. Med. 19, 269, doi.org/10.1186/s12967-021-02936-w
 
 
CITATIONS (5):
1.
Influence of Leptin on the Secretion of Growth Hormone in Ewes under Different Photoperiodic Conditions
Maciej Wójcik, Agata Krawczyńska, Dorota Zieba, Hanna Antushevich, Andrzej Herman
International Journal of Molecular Sciences
 
2.
Circadian and seasonal changes in the expression of clock genes in the ovine pars tuberalis
K. Wojtulewicz, M. Tomczyk, M. Wójcik, J. Bochenek, H. Antushevich, A. Krawczyńska, M. Załęcki, A. Herman
Journal of Animal and Feed Sciences
 
3.
Time-dependent effect of inflammation on the gene expression of pro-inflammatory cytokines and their receptors at the different levels of the somatotropic axis in ewe
M. Wójcik, D. Zięba, M. Tomczyk, J. Bochenek, H. Antushevich, A. Krawczyńska, A. Herman
Journal of Animal and Feed Sciences
 
4.
Effect of Caffeine on the Inflammatory-Dependent Changes in the GnRH/LH Secretion in a Female Sheep Model
Andrzej Przemysław Herman, Monika Tomczyk, Maciej Wójcik, Joanna Bochenek, Hanna Antushevich, Anna Herman, Wiktoria Wiechetek, Aleksandra Szczepkowska, Elżbieta Marciniak, Dorota Tomaszewska-Zaremba
International Journal of Molecular Sciences
 
5.
The role of QRFP43 in the secretory activity of the gonadotrophic axis in female sheep
Bartosz Jarosław Przybył, Michał Szlis, Bartłomiej Wysoczański, Anna Wójcik-Gładysz
Scientific Reports
 
ISSN:1230-1388
Journals System - logo
Scroll to top