0.917
IF5
1.024
IF
Q2
JCR
0.90
CiteScore
0.385
SJR
Q2
SJR
20
MNiSW
142.18
ICV
ORIGINAL PAPER
 
CC-BY 4.0
 
 

Acetate induces anorexia via up-regulating the hypothalamic pro-opiomelanocortin (POMC) gene expression in rabbits

L. Liu 1,  
H. Liu 1,  
C. Fu 1,  
C. Li 1,  
F. Li 1  
 
1
Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian, Shandong 271018, P.R. China
J. Anim. Feed Sci. 2017;26(3):266–273
Publish date: 2017-08-11
KEYWORDS:
TOPICS:
ABSTRACT:
The aim of the study was to describe the effects of acetate on hypothalamic G-protein-coupled receptor (GPR) 41 or 43, 5’-AMP-activated protein kinase (AMPK) signalling, mitogen-activated protein kinases (MAPKs) signalling and (an)orexigenic neuropeptides. Forty rabbits (Hyla, 35-day old) were randomly assigned to one of two treatment groups: intravenous injection of acetate (0.5 mg · kg−1 body weight) or vehicle (control). The acetate treatment decreased the rabbit feed intake within 5 h as compared with the control (P < 0.05). Although the acetate treatment had no effect on hypothalamic neuropeptide Y, agouti-related protein, cocaine-amphetamine-regulated transcript, GPR41, acetyl-CoA carboxylase, fatty acid synthase and carnitine palmitoyltransferase- 1 mRNA levels (P > 0.05), it significantly increased the gene expression of the pro-opiomelanocortin (POMC) and GPR43 (P < 0.05). Moreover, intravenous injection of acetate did not affect the protein levels of phosphorylated extracellular signal-regulated kinases, AMPK or p38 MAPK in comparison with the control group (P > 0.05); however, there was a significant increase in GPR43 protein level and decrease in phosphorylated c-Jun N-terminal kinases (JNK) level (P < 0.05). So, acetate induced anorexia via the up-regulation of hypothalamic POMC gene expression, which may be associated with membrane GPR43 and intracellular JNK signalling.
CORRESPONDING AUTHOR:
F. Li   
Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian, Shandong 271018, P.R. China
 
REFERENCES:
1. Asakawa A., Inui A., Yuzuriha H., Nagata T., Kaga T., Ueno N., Fujino M.A., Kasuga M., 2001. Cocaine-amphetamine-regulated transcript influences energy metabolism, anxiety and gastric emptying in mice. Horm. Metab. Res. 33, 554–558, https://doi.org/10.1055/s-2001-17205.
2. Andersson U., Filipsson K., Abbott C.R., Woods A., Smith K., Bloom S.R., Carling D., Small C.J., 2004. Small AMP-activated protein kinase plays a role in the control of food intake. J. Biol. Chem. 279, 12005–12008, https://doi.org/10.1074/jbc.C300557200.
3. Bergman E.N., 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567–590.
4. Bindels L.B., Dewulf E.M., Delzenne N.M., 2013. GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol. Sci. 34, 226–232, https://doi.org/10.1016/j.tips.2013.02.002.
5. Bjursell M., Admyre T., Göransson M., Marley A.E., Smith D.M., Oscarsson J., Bohlooly Y.M., 2011. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol.-Endocrinol. Metab. 300, E211–E220, https://doi.org/10.1152/ajpendo.00229.2010.
6. Brady L.S., Smith M.A., Gold P.W., Herkenham M., 1990. Altered expression of hypothalamic neuropeptide mRNAs in foodrestricted and food-deprived rats. Neuroendocrinology 52, 441–447, https://doi.org/10.1159/000125626.
7. Chai B., Li J.-Y., Zhang W., Wang H., Mulholland M.W., 2009. Melanocortin-4 receptor activation inhibits c-Jun N-terminal kinase activity and promotes insulin signaling. Peptides 30, 1098–1104, https://doi.org/10.1016/j.peptides.2009.03.006.
8. Challis B.G., Pinnock S.B., Coll A.P., Carter R.N., Dickson S.L., O’Rahilly S., 2003. Acute effects of PYY3–36 on food intake and hypothalamic neuropeptide expression in the mouse. Biochem. Biophys. Res. Commun. 311, 915–919, https://doi.org/10.1016/j.bbrc.2003.10.089.
9. Chambers E.S., Morrison D.J., Frost G., 2015. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc. Nutr. Soc. 74, 328–336, https://doi.org/10.1017/S0029665114001657.
10. Clark J.T., Kalra P.S., Crowley W.R., Kalra S.P., 1984. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 155, 427–429, https://doi.org/10.1210/endo-115-1-427.
11. Cobb M.H., 1999. MAP kinase pathways. Prog. Biophys. Mol. Bio. 71, 479–500, https://doi.org/10.1016/S0079-6107(98)00056-X.
12. de Blas C., Mateos G.G., 2010. Feed formulation. In: C. de Blas., J. Wiseman (Editors). Nutrition of the Rabbit. 2nd Edition. CABI, Wallingfold (UK), pp. 222–232.
13. Frost G., Sleeth M.L., Sahuri-Arisoylu M. et al., 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611, https://doi.org/10.1038/ncomms4611.
14. Hardie D.G., Hawley S.A., 2001. AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23, 1112–1119, https://doi.org/10.1002/bies.10009.
15. Hong Y.-H., Nishimura Y., Hishikawa D. et al., 2005. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, 5092–5099, https://doi.org/10.1210/en.2005-0545.
16. Hu G.-X., Chen G.-R., Xu H., Ge R.-S., Lin J., 2010. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med. Hypotheses 74, 123–126, https://doi.org/10.1016/j.mehy.2009.07.022.
17. Kim E.-K., Miller I., Aja S., Landree L.E., Pinn M., McFadden J., Kuhajda F.P., Moran T.H., Ronnett G.V., 2004. C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMPactivated protein kinase. J. Biol. Chem. 279, 19970–19976, https://doi.org/10.1074/jbc.M402165200.
18. Kim G.L., Dhillon S.S., Belsham D.D., 2010. Kisspeptin directly regulates neuropeptide Y synthesis and secretion via the ERK1/2 and p38 mitogen-activated protein kinase signaling pathways in NPY-secreting hypothalamic neurons. Endocrinology 151, 5038–5047, https://doi.org/10.1210/en.2010-0521.
19. Kimura I., Inoue D., Hirano K., Tsujimoto G., 2014. The SCFA receptor GPR43 and energy metabolism. Front. Endocrinol. 5, 85, https://doi.org/10.3389/fendo.2014.00085.
20. Kiss J.Z., Cassell M.D., Palkovits M., 1984. Analysis of the ACTH/β- End/α-MSH-immunoreactive afferent input to the hypothalamic paraventricular nucleus of rat. Brain Res. 324, 91–99, https://doi.org/10.1016/0006-8993(84)90625-5.
21. Kohno D., Sone H., Tanaka S., Kurita H., Gantulga D., Yada T., 2011. AMP-activated protein kinase activates neuropeptide Y neurons in the hypothalamic arcuate nucleus to increase food intake in rats. Neurosci. Lett. 499, 194–198, https://doi.org/10.1016/j.neulet.2011.05.060.
22. Li G., Yao W., Jiang H., 2014. Short-chain fatty acids enhance adipocyte differentiation in the stromal vascular fraction of porcine adipose tissue. J. Nutr. 144, 1887–1895, https://doi.org/10.3945/jn.114.198531.
23. Liu L., Song Z., Jiao H., Lin H., 2014. Glucocorticoids increase NPY gene expression via hypothalamic AMPK signaling in broiler chicks. Endocrinology 155, 2190–2198, https://doi.org/10.1210/en.2013-1632.
24. Livak K.J., Schmittgen T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta CT) method. Methods 25, 402–408, https://doi.org/10.1006/meth.2001.1262.
25. Mano-Otagiri A., Nemoto T., Sekino A., Yamauchi N., Shuto Y., Sugihara H., Oikawa S., Shibasaki T., 2006. Growth hormonereleasing hormone (GHRH) neurons in the arcuate nucleus (Arc) of the hypothalamus are decreased in transgenic rats whose expression of ghrelin receptor is attenuated: evidence that ghrelin receptor is involved in the up-regulation of GHRH expression in the Arc. Endocrinology 147, 4093–4103, https://doi.org/10.1210/en.2005-1619.
26. Mizuno T.M., Makimura H., Silverstein J., Roberts J.L., Lopingco T., Mobbs C.V., 1999. Fasting regulates hypothalamic neuropeptide Y, agouti-related peptide, and proopiomelanocortin in diabetic mice independent of changes in leptin or insulin. Endocrinology 140, 4551–4557, https://doi.org/10.1210/endo.140.10.6966.
27. Morikawa Y., Ueyama E., Senba E., 2004. Fasting-induced activation of mitogen-activated protein kinases (ERK/p38) in the mouse hypothalamus. J. Neuroendocrinol. 16, 105–112, https://doi.org/10.1111/j.0953-8194.2004.01135.x.
28. Nilsson N.E., Kotarsky K., Owman C., Olde B., 2003. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047–1052, https://doi.org/10.1016/S0006-291X(03)00488-1.
29. Prior L.J., Eikelis N., Armitage J.A., Davern P.J., Burke S.L., Montani J.- P., Barzel B., Head G.A., 2010. Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension 55, 862–868, https://doi.org/10.1161/HYPERTENSIONAHA.109.141119.
30. Rabbani G.H., Albert M.J., Rahman H., Chowdhury A.K., 1999. Shortchain fatty acids inhibit fluid and electrolyte loss induced by cholera toxin in proximal colon of rabbit in vivo. Dig. Dis. Sci. 44, 1547–1553, https://doi.org/10.1023/A:1026650624193.
31. Rahmouni K., Morgan D.A., Morgan G.M., Liu X., Sigmund C.D., Mark A.L., Haynes W.G., 2004. Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J. Clin. Invest. 114, 652–658, https://doi.org/10.1172/JCI21737.
32. Refojo D., Echenique C., Müller M.B., Reul J.M.H.M., Deussing J.M., Wurst W., Sillaber I., Paez-Pereda M., Holsboer F., Arzt E., 2005. Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas. Proc. Natl. Acad. Sci. USA 102, 6183–6188, https://doi.org/10.1073/pnas.0502070102.
33. Ropelle E.R., Pauli J.R., Fernandes M.F.A. et al., 2008. A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes 57, 594–605, https://doi.org/10.2337/db07-0573.
34. Rossi M., Kim M.S., Morgan D.G.A. et al., 1998. A C-terminal fragment of agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology 139, 4428–4431, https://doi.org/10.1210/endo.139.10.6332.
35. Rumberger J.M., Arch J.R.S., Green A., 2014. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes. PeerJ. 2, e611, https://doi.org/10.7717/peerj.611.
36. Savontaus E., Conwell I.M., Wardlaw S.L., 2002. Effects of adrenalectomy on AGRP, POMC, NPY and CART gene expression in the basal hypothalamus of fed and fasted rats. Brain Res. 958, 130–138, https://doi.org/10.1016/S0006-8993(02)03674-0.
37. Schaeffer H.J., Weber M.J., 1999. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19, 2435–2444, https://doi.org/10.1128/MCB.19.4.2435.
38. Schwartz M.W., Seeley R.J., Woods S.C., Weigle D.S., Campfield L.A., Burn P., Baskin D.G., 1997. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46, 2119–2123, https://doi.org/10.2337/diab.46.12.2119.
39. Smolenski R.T., Yacoub M.H., 1993. Liquid chromatographic evaluation of purine production in the donor human heart during transplantation. Biomed. Chromatogr. 7, 189–195, https://doi.org/10.1002/bmc.1130070404.
40. Tritos N.A., Vicent D., Gillette J., Ludwig D.S., Flier E.S., Maratos-Flier E., 1998. Functional interactions between melaninconcentrating hormone, neuropeptide Y, and anorectic neuropeptides in the rat hypothalamus. Diabetes 47, 1687–1692, https://doi.org/10.2337/diabetes.47.11.1687.
41. Tsaousidou E., Paeger L., Belgardt B.F. et al., 2014. Distinct roles for JNK and IKK activation in agouti-related peptide neurons in the development of obesity and insulin resistance. Cell Rep. 9, 1495–1506, https://doi.org/10.1016/j.celrep.2014.10.045.
ISSN:1230-1388