Conjugated linolenic acid (CLnA) isomers as new bioactive lipid compounds in ruminant-derived food products. A review
More details
Hide details
The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
Medical University of Warsaw, Department of Bromatology, Banacha 1, 02-097 Warsaw, Poland
Publication date: 2017-03-21
Corresponding author
M. Białek   

The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
J. Anim. Feed Sci. 2017;26(1):3-17
Conjugated linolenic acid (CLnA) isomers refer to a group of positional and geometric isomers of the omega-3 essential fatty acid – α-linolenic acid (cis-9,cis-12,cis-15 C18:3, ALA). CLnA isomers can be either cis- and/or trans- and their double bonds are separated by a single bond. Food products from ruminants and some plant products (e.g., pomegranate or bitter melon seeds) are the major sources of CLnA isomers for humans. CLnA isomers in ruminants arise as a result of bacterial isomerization of ALA in the rumen. The concentration of CLnA isomers in seed oils is higher than in milk and edible parts of ruminant carcass. The CLnA isomers from the plant sources are in the form of conjugated trienes, whereas those in ruminant products are of conjugated diene type. Some plant seed oils are the richest natural sources of CLnA isomers. So searching for methods of increasing the CLnA isomer content in food of animal origin not exhibiting negative effects on animal welfare and physiology is very important for researchers. A presence of long-chain and very long-chain conjugated unsaturated fatty acids was also confirmed in some ruminant tissues. Clinical studies documented that health-promoting properties have been attributed to CLnA isomers. It was also evidenced that animal diet may influence the CLnA synthesis. The proper identification of geometric and positional isomers of conjugated unsaturated fatty acids in biological samples is a great analytical challenge. Therefore, silver-ion high-performance liquid chromatography with photodiode detection and capillary gas-chromatography (GC) offer the best analysis of these isomers with complementary identification by GC-mass spectrometry.
Akraim F., Nicot M.C., Juaneda P., Enjalbert F., 2007. Conjugated linolenic acid (CLnA), conjugated linoleic acid (CLA) and other biohydrogenation intermediates in plasma and milk fat of cows fed raw or extruded linseed. Animal 1, 835–843,
Alves S.P., Bessa R.J.B., 2014. The trans-10,cis-15 18:2: a missing intermediate of trans-10 shifted rumen biohydrogenation pathway? Lipids 49, 527–541,
Badinga L., Gülay M.Ş., Ealy A., 2016. CLA and EPA inhibit LPS-induced prostaglandin release from bovine endometrial cells through an NF-κB-dependent signaling mechanism. Turk. J. Vet. Anim. Sci. 40, 382–388,
Bessa R.J.B., Alves S.P., Jerónimo E., Alfaia C.M., Prates J.A.M., Santos-Silva J., 2007. Effect of lipid supplements on ruminal biohydrogenation intermediates and muscle fatty acids in lambs. Eur. J. Lipid Sci. Technol. 109, 868–878,
Bialek A., Jelinska M., Bamburowicz-Klimkowska M., Tokarz A., 2014b. Effect of bitter melon aqueous extract and pomegranate oil on glucose concentration and lipid profile in blood of rats – preliminary study. Int. J. Cardiol. Lipidol. Res. 1, 1–7,
Białek A., Jelińska M., Tokarz A., Pergół A., Pinkiewicz K., 2016. Influence of pomegranate seed oil and bitter melon aqueous extract on polyunsaturated fatty acids and their lipoxygenase metabolites concentration in serum of rats. Prostaglandins Other Lipid Mediat. 126, 29–37,
Białek A., Teryks M., Tokarz A., 2014a. Conjugated linolenic acids (CLnA, super CLA) – natural sources and biological activity. (in Polish) Postepy Hig. Med. Dosw. 68, 1238–1250,
Białek A., Tokarz A., 2013. Conjugated linoleic acid as a potential protective factor in prevention of breast cancer. (in Polish) Postepy Hig. Med. Dosw. 67, 6–14,
Buccioni A., Decandia M., Minieri S., Molle G., Cabiddu A., 2012. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 74, 1–25,
Chaturvedula V.S.P., Indra P., 2011. Bioactive chemical constituents from pomegranate (Punica granatum) juice, seed and peel – a review. Int. J. Res. Chem. Environ. 1, 1–18
Corl B.A., Baumgard L.H., Dwyer D.A., Griinari J.M., Phillips B.S., Bauman D.E., 2001. The role of Δ9-desaturase in the production of cis-9, trans-11 CLA. J. Nutr. Biochem. 12, 622–630,
Cross R.F., Zackari H., 2002. Ag+-hPLC of conjugated linoleic acids on a silica based stationary phase. Part III: Model compounds. J. Sep. Sci. 25, 897–903,<245::AID-JSSC245>3.0.CO;2-O
Czauderna M., Kowalczyk J., Marounek M., Michalski J.P., Rozbicka-Wieczorek A.J., Krajewska K.A., 2011. A new internal standard for HPLC assay of conjugated linoleic acid in animal tissues and milk. Czech J. Anim. Sci. 56, 23–29
Czauderna M., Kowalczyk J., Wąsowska I., Niedźwiecka K.M., 2003. Determination of conjugated linoleic acid isomers by liquid chromatography and photodiode array detection. J. Anim. Feed Sci. 12, 369–382,
de Carvalho E.B.T., de Melo I.L.P., Mancini-Filho J., 2010. Chemical and physiological aspects of isomers of conjugated fatty acids. Ciênc. Tecnol. Aliment. 30, 295–307,
Decker E.A., Park Y., 2010. Healthier meat products as functional foods. Meat Sci. 86, 49–55,
de la Fuente M.A., Luna P., Juárez M., 2006. Chromatographic techniques to determine conjugated linoleic acid isomers. TrAC Trends Anal. Chem. 25, 917–926,
Destaillats F., Berdeaux O., Sébédio J.-L., Juaneda P., Grégoire S., Chardigny J.-M., Bretillon L., Angers P., 2005a. Metabolites of conjugated isomers of α-linolenic acid (CLnA) in the rat. J. Agric. Food Chem. 53, 1422–1427,
Destaillats F., Trottier J.P., Galvez J.M.G., Angers P., 2005b. Analysis of α-linolenic acid biohydrogenation intermediates in milk fat with emphasis on conjugated linolenic acids. J. Dairy Sci. 88, 3231–3239,
Doreau M., Bauchart D., Chilliard Y., 2011. Enhancing fatty acid composition of milk and meat through animal feeding. Anim. Prod. Sci. 51, 19–29,
Dugan M.E.R., Aldai N., Aalhaus J.L., Rolland D.C., Kramer J.K.G., 2011. Review: Trans-forming beef to provide healthier fatty acid profiles. Can. J. Anim. Sci., 91, 545–556,
Ebrahimi M., Rajion M.A., Goh Y.M., 2014. Effects of oils rich in linolenic and α linolenic acids on fatty acid profile and gene expression in goat meat. Nutrients 6, 3913–3928,
Fontes A.L.R., 2015. Identification of bacterial strains able to produce CLNA isomers for a possible application in the elaboration of new functional food products. Master Thesis, Universidade Católica Portugesa, Porto (Portugal)
Fritsche J., Fritsche S., Solomon M.B., Mossoba M.M., Yurawecz M.P., Morehouse K., Ku Y., 2000. Quantitative determination of conjugated linoleic acid isomers in beef fat. Eur. J. Lipid Sci. Technol. 102, 667–672,<667::AID-EJLT667>3.0.CO;2-N
Gasmi J., Sanderson J.T., 2013. Jacaric acid and its octadecatrienoic acid geoisomers induce apoptosis selectively in cancerous human prostate cells: a mechanistic and 3-D structure–activity study. Phytomedicine 20, 734–742,
Glasser F., Ferlay A., Doreau M., Schmidely P., Sauvant D., Chilliard Y., 2008. Long-chain fatty acid metabolism in dairy cows: a meta-analysis of milk fatty acid yield in relation to duodenal flows and de novo synthesis. J. Dairy Sci. 91, 2771–2785,
Gómez-Cortés P., Tyburczy C., Brenna J.T., Juárez M., de la Fuente M.A., 2009. Characterization of cis-9 trans-11 trans-15 C18:3 in milk fat by GC and covalent adduct chemical ionization tandem MS. J. Lipid Res. 50, 2412–2420,
Griinari J.M., Bauman D.E., 1999. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: M.P. Yurawecz, Mossoba M.M., J.K.G. Kramer, M.W. Pariza, G.J. Nelson (Editors). Advances in Conjugated Linoleic Acid Research. Volume 1. AOCS Press, Champaign, IL (USA), pp. 180–200
Grossmann M.E., Mizuno N.K., Schuster T., Cleary M.P., 2010. Punicic acid is an ω-5 fatty acid capable of inhibiting breast cancer proliferation. Int. J. Oncol. 36, 421–426,
Ha Y.L., Grimm N.K., Pariza M.W., 1987. Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis 8, 1881–1887,
Halmemies-Beauchet-Filleau A., Kokkonen T., Lampi A.-M., Toivonen V., Shingfield K.J., Vanhatalo A., 2011. Effect of plant oils and camelina expeller on milk fatty acid composition in lactating cows fed diet based on red clover silage. J. Dairy Sci., 94, 4413–4430,
Harfoot C.G., Hazlewood G.P., 1997. Lipid metabolism in the rumen. In: P.N. Hobson, C.S. Stewart (Editors). The Rumen Microbial Ecosystem. Chapman & Hall, London (UK), pp. 382–426
Hennessy A.A., Ross R.P., Devery R., Stanton C., 2011. The health promoting properties of the conjugated isomers of α-linolenic acid. Lipids 46, 105–119,
Honkanen A.M., Leskinen H., Toivonen V., McKain N., Wallace R.J., Shingfield K.J., 2016. Metabolism of α-linolenic acid during incubations with strained bovine rumen contents: products and mechanisms. Br. J. Nutr. 115, 2093–2105,
Jelińska M., Białek A., Mojska H., Gielecińska I., Tokarz A., 2014. Effect of conjugated linoleic acid mixture supplemented daily after carcinogen application on linoleic and arachidonic acid metabolites in rat serum and induced tumours. Biochim. Biophys. Acta Mol. Basis Dis. 1842, 2230–2236,
Jenkins T.C., Wallace R.J., Moate P.J., Mosley E.E., 2008. Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 86, 397–412,
Jerónimo E., Alves S.P., Alfaia C.M., Prates J.M., Santos-Silva J., Bessa R.J.B., 2011. Biohydrogenation intermediates are differentially deposited between polar and neutral intramuscular lipids of lambs. Eur. J. Lipid Sci. Technol. 113, 924–934,
Kairenius P., Toivonen T., Shingfield K.J., 2011. Identification and ruminal outflow of long-chain fatty acids biohydrogenation intermediates in cows fed diets containing fish oil. Lipids 46, 587–606,
Kishino S., Ogawa J., Yokozeki K., Shimizu S., 2009. Metabolic diversity in biohydrogenation of polyunsaturated fatty acids by lactic acid bacteria involving conjugated fatty acid production. Appl. Microbiol. Biotechnol. 84, 87–97,
Koba K., Belury M.A. Sugano M., 2007a. Potential health benefits of conjugated trienoic acids. Lipid Technol. 19, 200–203,
Koba K., Imamura J., Akashoshi A., Kohno-Murase J., Nishizono S., Iwabuchi M., Tanaka K., Sugano M., 2007b. Genetically modified rapeseed oil containing cis-9,trans-11,cis-13-octadecatrienoic acid affects body fat mass and lipid metabolism in mice. J. Agric. Food Chem. 55, 3741–3748,
Kotsampasi B., Christodoulou V., Zotos A., Liakopoulou-Kyriakides M., Goulas P., Petrotos K., Natas P., Bampidis V.A., 2014. Effects of dietary pomegranate byproducts silage supplementation on performance, carcass characteristics and meat quality of growing lambs. Anim. Feed Sci. Technol. 197, 92–102,
Leat W.M.F., Kemp P., Lysons R.J., Alexander T.J.L., 1977. Fatty acid composition of depot fats from gnotobiotic lambs. J. Agric. Sci. 88, 175–179,
Lee Y.-J., Jenkins T.C., 2011. Biohydrogenation of linolenic acid to stearic acid by the rumen microbial population yields multiple intermediate conjugated diene isomers. J. Nutr. 141, 1445–1450,
Lerch S., Shingfield K.J., Ferlay A., Vanhatalo A., Chillard Y., 2012. Rapeseed or linseed in grass-based diets: Effects on conjugated linoleic and conjugated linolenic acid isomers in milk fat from Holstein cows over 2 consecutive lactations. J. Dairy Sci. 95, 7269–7287,
Loor J.J., Ueda K., Ferlay A., Chilliard Y., Doreau M., 2004. Biohydrogenation, duodenal flow, and intestinal digestibility of trans fatty acid and conjugated linoleic acids in response to dietary forage:concentrate ratio and linseed oil in dairy cows. J. Dairy Sci. 87, 2472–2485,
Loor J.J., Ueda K., Ferlay A., Chilliard Y., Doreau M., 2005. Intestinal flow and digestibility of trans fatty acids and conjugated linoleic acids (CLA) in dairy cows fed a high-concentrate diet supplemented with fish oil, linseed oil, or sunflower oil. Anim. Feed Sci. Technol. 119, 203–225,
Manso T., Gallardo B., Guerra-Rivas C., 2016. Modifying milk and meat fat quality through feed changes. Small Rumin. Res. 142, 31–37,
Mapiye C., Aalhus J.L., Turner T.D. et al., 2013b. Effects of feeding flaxseed or sunflower-seed in high-forage diets on beef production, quality and fatty acid composition. Meat Sci. 95, 98–109,
Mapiye C., Turner T.D., Rolland D.C., Basarab J.A., Baron V.S., McAllister T.A., Block H.C., Uttaro B., Aalhus J.L., Dugan M.E.R., 2013a. Adipose tissue and muscle fatty acid profiles of steers fed red clover silage with and without flaxseed. Livest. Sci. 151, 11–20,
Mapiye C., Vahmani P, Mlambo V., Muchenje V., Dzama K., Hoffman L.C., Dugan M.E.R., 2015. The trans-octadecenoic fatty acid profile of beef: Implications for global food and nutrition security. Food Res. Int. 76, 992–1000,
Melo I.L.P., de Carvalho E.B.T., Silva A.M.O, Yoshmine L.T., Sattler J.A.G., Pavan R.T., Mancini-Filho J., 2016. Characterization of constituents, quality and stability of pomegranate seed oil (Punica granatum L.). Food Sci. Technol. 36, 132–139,
Mills S., Ross R.P., Hill C., Fitzgerald G.F., Stanton C., 2011. Milk intelligence: Mining milk for bioactive substances associated with human health. Int. Dairy J. 21, 377–401,
Modaresi J., Fathi Nasri M.H., Rashidi L., Dayani O., Kebreab E., 2011. Effect of supplementation with pomegranate seed pulp on concentrations of conjugated linoleic acid and punicic acid in goat milk. J. Dairy Sci. 94, 4075–4080,
Nekooeian A.A., Eftekhari M.H., Adibi S., Rajaeifard A., 2014. Effect of pomegranate seed oil on insulin release in rats with type 2 diabetes. Iran. J. Med. Sci. 39, 130–135
Ogawa J., Kishino S., Ando A., Sugimoto S., Mihara K., Shimizu S., 2005. Production of conjugated fatty acids by lactic acid bacteria. J. Biosci. Bioeng. 100, 355–364,
Park Y., Pariza M.W., 2007. Mechanisms of body fat modulation by conjugated linoleic acid (CLA). Food Res. Int. 40, 311–323,
Pariza M.W., Ashoor S.H., Chu F.S., Lund D.B., 1979. Effects of temperature and time on mutagen formation in pan-fried hamburger. Cancer Lett. 7, 63–69,
Pariza M.W., Park Y., Cook M.E., 1999. Conjugated linoleic acid and the control of cancer and obesity. Toxicol. Sci. 52, Suppl. 1, 107–110,
Petersen M.B., 2014. The effect of forbs on rumen biohydrogenation of fatty acids and bovine milk fatty acid composition. PhD Thesis, Aarhus University, Aarhus (Denmark)
Plourde M., Destaillats F., Chouinard P.Y., Angers P., 2007. Conjugated α-linolenic acid isomers in bovine milk and muscle. J. Dairy Sci., 90, 5269–5275,
Plourde M., Sergiel J.-P., Chardigny J.-M., Grégoire S., Angers P., Sébédio J.-L., 2006. Absorption and metabolism of conjugated α-linolenic acid given as free fatty acids or triacyloglycerols in rats. Nutr. Metab. 3, 8,
Ray R.B., Raychoudhuri A., Steele R., Nerurkar P., 2010. Bitter Melon (Momordica charantia) extract inhibits breast cancer cell proliferation by modulating cell cycle regulatory genes and promotes apoptosis. Cancer Res. 70, 1925–1931,
Razzaghi A., Naserian A.A., Valizadeh R., Ebrahimi S.H., Khorrami B., Malekkhahi M., Khiaosa-ard R., 2015. Pomegranate seed pulp, pistachio hulls and tomato pomace as replacement of wheat bran increased milk conjugated linoleic acid concentrations without adverse effects on ruminal fermentation and performance of Saanen dairy goats. Anim. Feed Sci. Technol. 210, 46-55,
Rego O.A., Alves S.P., Antunes L.M.S., Rosa H.J.D., Alfaia C.F.M., Prates J.A.M., Cabrita A.R.J., Fonseca A.J.M., Bessa R.J.B., 2009. Rumen biohydrogenation-derived fatty acids in milk fat from grazing dairy cows supplemented with rapeseed, sunflower, or linseed oils. J. Dairy Sci. 92, 4530–4540,
Roach J.A.G., Mossoba M.M., Yurawecz M.P., Kramer J.K.G., 2002. Chromatographic separation and identification of conjugated linoleic acid isomers. Anal. Chim. Acta 465, 207–226,
Saha S.S., Ghosh M., 2009. Comparative study of antioxidant activity of α-eleostearic acid and punicic acid against oxidative stress generated by sodium arsenite. Food Chem. Toxicol. 47, 2551–2556,
Saliba L., Gervais R., Lebeuf Y., Chouinard P.Y., 2014. Effect of feeding linseed oil in diets differing in forage to concentrate ratio: 1. Production performance and milk fat content of biohydrogenation intermediates of α-linolenic acid. J. Dairy Res. 81, 82–90,
Shingfield K.J., Bernard L., Leroux C., Chilliard Y., 2010a. Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal 4, 1140–1166,
Shingfield K.J., Bonnet M., Scollan N.D., 2013. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 7, Suppl. 1, 132–162,
Shingfield K.J., Lee M.R.F., Humphries D.J., Scollan N.D., Toivonen V., Reynolds C.K., Beever D.E., 2010b. Effect of incremental amounts of fish oil in the diet on ruminal lipid metabolism in growing steers. Br. J. Nutr. 104, 56–66,
Shinohara N., Tsuduki T., Ito J. et al., 2012. Jacaric acid, a linolenic acid isomer with a conjugated triene system, has a strong antitumor effect in vitro and in vivo. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1821, 980–988,
Sinclair L.A, 2007. Nutritional manipulation of the fatty acid composition of sheep meat: a review. J. Agric. Sci. 145, 419–434,
Stolyhwo A., Rutkowska J., 2013. An improved silver ion HPLC combined with capillary gas chromatography of cis/trans fatty acids in alimentary fats and human milk fat. Food Anal. Methods 6, 457–469,
Tanaka K., 2005. Occurrence of conjugated linoleic acid in ruminant products and its physiological functions. Animal Sci. J. 76, 291–303,
Tsuzuki T., Kawakami Y., Abe R., Nakagawa K., Koba K., Imamura J., Iwata T., Ikeda I., Miyazawa T., 2006. Conjugated linolenic acid is slowly absorbed in rat intestine, but quickly converted to conjugated linoleic acid. J. Nutr. 136, 2153–2159
Tsuzuki T., Tokuyama Y., Igarashi M., Nakagawa K., Ohsaki Y., Komai M., Miyazawa T., 2004. α-Eleostearic acid (9z11E13E-18:3) is quickly converted to conjugated linoleic acid (9Z11E-18:2) in rats. J. Nutr. 134, 2634–2639
Turner T.D., Meadus W.J., Mapiye C., Vahmani P., López-Campos O., Duff P., Rolland D.C., Church J.S., Dugan M.E.R., 2015. Isolation of α-linolenic acid biohydrogenation products by combined silver ion solid phase extraction and semi-preparative high performance liquid chromatography. J. Chromatogr. B 980, 34–40,
Vroegrijk I.O.C.M., van Diepen J.A., van den Berg S. et al., 2011. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food Chem. Toxicol. 49, 1426–1430,
Wallace R.J., McKain N., Shingfield K.J., Devillard E., 2007. Isomers of conjugated linoleic acids are synthesized via different mechanisms in ruminal digesta and bacteria. J. Lipid Res. 48, 2247–2254,
Wąsowska I., Maia M.R.G., Niedźwiedzka K.M., Czauderna M., Ramalho Ribeiro J.M.C., Devillard E., Shingfield K.J., Wallace R.J., 2006. Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Br. J. Nutr. 95, 1199–1211,
Wood J.D., Enser M., Fisher A.V., Nute G.R., Sheard P.R., Richardson R.I., Hughes S.I., Whittington F.M., 2008. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 78, 343–358,
Yasui Y., Hosokawa M., Kohno H., Tanaka T., Miyashita K., 2006. Growth inhibition and apoptosis induction by all-trans-conjugated linolenic acids on human colon cancer cells. Anticancer Res. 26, 1855–1860
Yuan G., Sinclair A.J., Xu C., Li D., 2009a. Incorporation and metabolism of punicic acid in healthy young humans. Mol. Nutr. Food Res. 53, 1336–1342,
Yuan G.-F., Chen X.-E., Li D., 2014. Conjugated linolenic acids and their bioacitivities: a review. Food Funct. 5, 1360–1368,
Yuan G.-F., Sinclair A.J., Sun H.-Y., Li D., 2009b. Fatty acid composition in tissues of mice fed diets containing conjugated linolenic acid and conjugated linoleic acid. J. Food Lipids 16, 148–163,
Yuan G.-F., Wahlqvist M.L., Yuan J.-Q., Wang Q.-M., Li D., 2009c. Effect of punicic acid naturally occurring in food on lipid peroxidation in healthy young humans. J. Sci. Food Agric. 89, 2331–2335,
Zened A., Troegeler-Meynadier A., Nicot M.C., Combes S., Cauquil L., Farizon Y., Enjalbert F., 2011. Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminal biohydrogenation of linoleic and linolenic acids. J. Dairy Sci., 94, 5634–5645,
Journals System - logo
Scroll to top