CC-BY 4.0

Conjugated linolenic acid (CLnA) isomers as new bioactive lipid compounds in ruminant-derived food products. A review

M. Białek 1  ,  
M. Czauderna 1  ,  
A. Białek 2  
The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
Medical University of Warsaw, Department of Bromatology, Banacha 1, 02-097 Warsaw, Poland
J. Anim. Feed Sci. 2017;26(1):3–17
Publish date: 2017-03-21
Conjugated linolenic acid (CLnA) isomers refer to a group of positional and geometric isomers of the omega-3 essential fatty acid – α-linolenic acid (cis-9,cis-12,cis-15 C18:3, ALA). CLnA isomers can be either cis- and/or trans- and their double bonds are separated by a single bond. Food products from ruminants and some plant products (e.g., pomegranate or bitter melon seeds) are the major sources of CLnA isomers for humans. CLnA isomers in ruminants arise as a result of bacterial isomerization of ALA in the rumen. The concentration of CLnA isomers in seed oils is higher than in milk and edible parts of ruminant carcass. The CLnA isomers from the plant sources are in the form of conjugated trienes, whereas those in ruminant products are of conjugated diene type. Some plant seed oils are the richest natural sources of CLnA isomers. So searching for methods of increasing the CLnA isomer content in food of animal origin not exhibiting negative effects on animal welfare and physiology is very important for researchers. A presence of long-chain and very long-chain conjugated unsaturated fatty acids was also confirmed in some ruminant tissues. Clinical studies documented that health-promoting properties have been attributed to CLnA isomers. It was also evidenced that animal diet may influence the CLnA synthesis. The proper identification of geometric and positional isomers of conjugated unsaturated fatty acids in biological samples is a great analytical challenge. Therefore, silver-ion high-performance liquid chromatography with photodiode detection and capillary gas-chromatography (GC) offer the best analysis of these isomers with complementary identification by GC-mass spectrometry.
M. Białek   
The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
1. Akraim F., Nicot M.C., Juaneda P., Enjalbert F., 2007. Conjugated linolenic acid (CLnA), conjugated linoleic acid (CLA) and other biohydrogenation intermediates in plasma and milk fat of cows fed raw or extruded linseed. Animal 1, 835–843, https://doi.org/10.1017/S175173110700002X
2. Alves S.P., Bessa R.J.B., 2014. The trans-10,cis-15 18:2: a missing intermediate of trans-10 shifted rumen biohydrogenation pathway? Lipids 49, 527–541, https://doi.org/10.1007/s11745-014-3897-4
3. Badinga L., Gülay M.Ş., Ealy A., 2016. CLA and EPA inhibit LPS-induced prostaglandin release from bovine endometrial cells through an NF-κB-dependent signaling mechanism. Turk. J. Vet. Anim. Sci. 40, 382–388, https://doi.org/10.3906/vet-1510-67
4. Bessa R.J.B., Alves S.P., Jerónimo E., Alfaia C.M., Prates J.A.M., Santos-Silva J., 2007. Effect of lipid supplements on ruminal biohydrogenation intermediates and muscle fatty acids in lambs. Eur. J. Lipid Sci. Technol. 109, 868–878, https://doi.org/10.1002/ejlt.200600311
5. Bialek A., Jelinska M., Bamburowicz-Klimkowska M., Tokarz A., 2014b. Effect of bitter melon aqueous extract and pomegranate oil on glucose concentration and lipid profile in blood of rats – preliminary study. Int. J. Cardiol. Lipidol. Res. 1, 1–7, https://doi.org/10.15379/2410-2822.2014.01.01.01
6. Białek A., Jelińska M., Tokarz A., Pergół A., Pinkiewicz K., 2016. Influence of pomegranate seed oil and bitter melon aqueous extract on polyunsaturated fatty acids and their lipoxygenase metabolites concentration in serum of rats. Prostaglandins Other Lipid Mediat. 126, 29–37, https://doi.org/10.1016/j.prostaglandins.2016.07.005
7. Białek A., Teryks M., Tokarz A., 2014a. Conjugated linolenic acids (CLnA, super CLA) – natural sources and biological activity. (in Polish) Postepy Hig. Med. Dosw. 68, 1238–1250, https://doi.org/10.5604/17322693.1127881
8. Białek A., Tokarz A., 2013. Conjugated linoleic acid as a potential protective factor in prevention of breast cancer. (in Polish) Postepy Hig. Med. Dosw. 67, 6–14, https://doi.org/10.5604/17322693.1028764
9. Buccioni A., Decandia M., Minieri S., Molle G., Cabiddu A., 2012. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 74, 1–25, https://doi.org/10.1016/j.anifeedsci.2012.02.009
10. Chaturvedula V.S.P., Indra P., 2011. Bioactive chemical constituents from pomegranate (Punica granatum) juice, seed and peel – a review. Int. J. Res. Chem. Environ. 1, 1–18
11. Corl B.A., Baumgard L.H., Dwyer D.A., Griinari J.M., Phillips B.S., Bauman D.E., 2001. The role of Δ9-desaturase in the production of cis-9, trans-11 CLA. J. Nutr. Biochem. 12, 622–630, http://dx.doi.org/10.1016/S0955-2863(01)00180-2
12. Cross R.F., Zackari H., 2002. Ag+-hPLC of conjugated linoleic acids on a silica based stationary phase. Part III: Model compounds. J. Sep. Sci. 25, 897–903, https://doi.org/10.1002/1615-9314(20020301)25:4<245::AID-JSSC245>3.0.CO;2-O
13. Czauderna M., Kowalczyk J., Marounek M., Michalski J.P., Rozbicka-Wieczorek A.J., Krajewska K.A., 2011. A new internal standard for HPLC assay of conjugated linoleic acid in animal tissues and milk. Czech J. Anim. Sci. 56, 23–29
14. Czauderna M., Kowalczyk J., Wąsowska I., Niedźwiecka K.M., 2003. Determination of conjugated linoleic acid isomers by liquid chromatography and photodiode array detection. J. Anim. Feed Sci. 12, 369–382, https://doi.org/10.22358/jafs/67717/2003
15. de Carvalho E.B.T., de Melo I.L.P., Mancini-Filho J., 2010. Chemical and physiological aspects of isomers of conjugated fatty acids. Ciênc. Tecnol. Aliment. 30, 295–307, https://doi.org/10.1590/S0101-20612010000200002
16. Decker E.A., Park Y., 2010. Healthier meat products as functional foods. Meat Sci. 86, 49–55, https://doi.org/10.1016/j.meatsci.2010.04.021
17. de la Fuente M.A., Luna P., Juárez M., 2006. Chromatographic techniques to determine conjugated linoleic acid isomers. TrAC Trends Anal. Chem. 25, 917–926, https://doi.org/10.1016/j.trac.2006.04.012
18. Destaillats F., Berdeaux O., Sébédio J.-L., Juaneda P., Grégoire S., Chardigny J.-M., Bretillon L., Angers P., 2005a. Metabolites of conjugated isomers of α-linolenic acid (CLnA) in the rat. J. Agric. Food Chem. 53, 1422–1427, https://doi.org/10.1021/jf0481958
19. Destaillats F., Trottier J.P., Galvez J.M.G., Angers P., 2005b. Analysis of α-linolenic acid biohydrogenation intermediates in milk fat with emphasis on conjugated linolenic acids. J. Dairy Sci. 88, 3231–3239, https://doi.org/10.3168/jds.S0022-0302(05)73006-X
20. Doreau M., Bauchart D., Chilliard Y., 2011. Enhancing fatty acid composition of milk and meat through animal feeding. Anim. Prod. Sci. 51, 19–29, https://doi.org/10.1071/AN10043
21. Dugan M.E.R., Aldai N., Aalhaus J.L., Rolland D.C., Kramer J.K.G., 2011. Review: Trans-forming beef to provide healthier fatty acid profiles. Can. J. Anim. Sci., 91, 545–556, https://doi.org/10.4141/cjas2011-044
22. Ebrahimi M., Rajion M.A., Goh Y.M., 2014. Effects of oils rich in linolenic and α linolenic acids on fatty acid profile and gene expression in goat meat. Nutrients 6, 3913–3928, https://doi.org/10.3390/nu6093913
23. Fontes A.L.R., 2015. Identification of bacterial strains able to produce CLNA isomers for a possible application in the elaboration of new functional food products. Master Thesis, Universidade Católica Portugesa, Porto (Portugal)
24. Fritsche J., Fritsche S., Solomon M.B., Mossoba M.M., Yurawecz M.P., Morehouse K., Ku Y., 2000. Quantitative determination of conjugated linoleic acid isomers in beef fat. Eur. J. Lipid Sci. Technol. 102, 667–672, https://doi.org/10.1002/1438-9312(200011)102:11<667::AID-EJLT667>3.0.CO;2-N
25. Gasmi J., Sanderson J.T., 2013. Jacaric acid and its octadecatrienoic acid geoisomers induce apoptosis selectively in cancerous human prostate cells: a mechanistic and 3-D structure–activity study. Phytomedicine 20, 734–742, https://doi.org/10.1016/j.phymed.2013.01.012
26. Glasser F., Ferlay A., Doreau M., Schmidely P., Sauvant D., Chilliard Y., 2008. Long-chain fatty acid metabolism in dairy cows: a meta-analysis of milk fatty acid yield in relation to duodenal flows and de novo synthesis. J. Dairy Sci. 91, 2771–2785, https://doi.org/10.3168/jds.2007-0383
27. Gómez-Cortés P., Tyburczy C., Brenna J.T., Juárez M., de la Fuente M.A., 2009. Characterization of cis-9 trans-11 trans-15 C18:3 in milk fat by GC and covalent adduct chemical ionization tandem MS. J. Lipid Res. 50, 2412–2420, https://doi.org/10.1194/jlr.M800662-JLR200
28. Griinari J.M., Bauman D.E., 1999. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: M.P. Yurawecz, Mossoba M.M., J.K.G. Kramer, M.W. Pariza, G.J. Nelson (Editors). Advances in Conjugated Linoleic Acid Research. Volume 1. AOCS Press, Champaign, IL (USA), pp. 180–200
29. Grossmann M.E., Mizuno N.K., Schuster T., Cleary M.P., 2010. Punicic acid is an ω-5 fatty acid capable of inhibiting breast cancer proliferation. Int. J. Oncol. 36, 421–426, https://doi.org/10.3892/ijo_00000515
30. Ha Y.L., Grimm N.K., Pariza M.W., 1987. Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis 8, 1881–1887, https://doi.org/10.1093/carcin/8.12.1881
31. Halmemies-Beauchet-Filleau A., Kokkonen T., Lampi A.-M., Toivonen V., Shingfield K.J., Vanhatalo A., 2011. Effect of plant oils and camelina expeller on milk fatty acid composition in lactating cows fed diet based on red clover silage. J. Dairy Sci., 94, 4413–4430, https://doi.org/10.3168/jds.2010-3885
32. Harfoot C.G., Hazlewood G.P., 1997. Lipid metabolism in the rumen. In: P.N. Hobson, C.S. Stewart (Editors). The Rumen Microbial Ecosystem. Chapman & Hall, London (UK), pp. 382–426
33. Hennessy A.A., Ross R.P., Devery R., Stanton C., 2011. The health promoting properties of the conjugated isomers of α-linolenic acid. Lipids 46, 105–119, https://doi.org/10.1007/s11745-010-3501-5
34. Honkanen A.M., Leskinen H., Toivonen V., McKain N., Wallace R.J., Shingfield K.J., 2016. Metabolism of α-linolenic acid during incubations with strained bovine rumen contents: products and mechanisms. Br. J. Nutr. 115, 2093–2105, https://doi.org/10.1017/S0007114516001446
35. Jelińska M., Białek A., Mojska H., Gielecińska I., Tokarz A., 2014. Effect of conjugated linoleic acid mixture supplemented daily after carcinogen application on linoleic and arachidonic acid metabolites in rat serum and induced tumours. Biochim. Biophys. Acta Mol. Basis Dis. 1842, 2230–2236, https://doi.org/10.1016/j.bbadis.2014.08.013
36. Jenkins T.C., Wallace R.J., Moate P.J., Mosley E.E., 2008. Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 86, 397–412, https://doi.org/10.2527/jas.2007-0588
37. Jerónimo E., Alves S.P., Alfaia C.M., Prates J.M., Santos-Silva J., Bessa R.J.B., 2011. Biohydrogenation intermediates are differentially deposited between polar and neutral intramuscular lipids of lambs. Eur. J. Lipid Sci. Technol. 113, 924–934, https://doi.org/10.1002/ejlt.201000398
38. Kairenius P., Toivonen T., Shingfield K.J., 2011. Identification and ruminal outflow of long-chain fatty acids biohydrogenation intermediates in cows fed diets containing fish oil. Lipids 46, 587–606, https://doi.org/10.1007/s11745-011-3561-1
39. Kishino S., Ogawa J., Yokozeki K., Shimizu S., 2009. Metabolic diversity in biohydrogenation of polyunsaturated fatty acids by lactic acid bacteria involving conjugated fatty acid production. Appl. Microbiol. Biotechnol. 84, 87–97, https://doi.org/10.1007/s00253-009-1949-0
40. Koba K., Belury M.A. Sugano M., 2007a. Potential health benefits of conjugated trienoic acids. Lipid Technol. 19, 200–203, https://doi.org/10.1002/lite.200700067
41. Koba K., Imamura J., Akashoshi A., Kohno-Murase J., Nishizono S., Iwabuchi M., Tanaka K., Sugano M., 2007b. Genetically modified rapeseed oil containing cis-9,trans-11,cis-13-octadecatrienoic acid affects body fat mass and lipid metabolism in mice. J. Agric. Food Chem. 55, 3741–3748, https://doi.org/10.1021/jf063264z
42. Kotsampasi B., Christodoulou V., Zotos A., Liakopoulou-Kyriakides M., Goulas P., Petrotos K., Natas P., Bampidis V.A., 2014. Effects of dietary pomegranate byproducts silage supplementation on performance, carcass characteristics and meat quality of growing lambs. Anim. Feed Sci. Technol. 197, 92–102, https://doi.org/10.1016/j.anifeedsci.2014.09.003
43. Leat W.M.F., Kemp P., Lysons R.J., Alexander T.J.L., 1977. Fatty acid composition of depot fats from gnotobiotic lambs. J. Agric. Sci. 88, 175–179, https://doi.org/10.1017/S0021859600033918
44. Lee Y.-J., Jenkins T.C., 2011. Biohydrogenation of linolenic acid to stearic acid by the rumen microbial population yields multiple intermediate conjugated diene isomers. J. Nutr. 141, 1445–1450, https://doi.org/10.3945/jn.111.138396
45. Lerch S., Shingfield K.J., Ferlay A., Vanhatalo A., Chillard Y., 2012. Rapeseed or linseed in grass-based diets: Effects on conjugated linoleic and conjugated linolenic acid isomers in milk fat from Holstein cows over 2 consecutive lactations. J. Dairy Sci. 95, 7269–7287, https://doi.org/10.3168/jds.2012-5654
46. Loor J.J., Ueda K., Ferlay A., Chilliard Y., Doreau M., 2004. Biohydrogenation, duodenal flow, and intestinal digestibility of trans fatty acid and conjugated linoleic acids in response to dietary forage:concentrate ratio and linseed oil in dairy cows. J. Dairy Sci. 87, 2472–2485, https://doi.org/10.3168/jds.S0022-0302(04)73372-X
47. Loor J.J., Ueda K., Ferlay A., Chilliard Y., Doreau M., 2005. Intestinal flow and digestibility of trans fatty acids and conjugated linoleic acids (CLA) in dairy cows fed a high-concentrate diet supplemented with fish oil, linseed oil, or sunflower oil. Anim. Feed Sci. Technol. 119, 203–225, https://doi.org/10.1016/j.anifeedsci.2005.01.001
48. Manso T., Gallardo B., Guerra-Rivas C., 2016. Modifying milk and meat fat quality through feed changes. Small Rumin. Res. 142, 31–37, https://doi.org/10.1016/j.smallrumres.2016.03.003
49. Mapiye C., Aalhus J.L., Turner T.D. et al., 2013b. Effects of feeding flaxseed or sunflower-seed in high-forage diets on beef production, quality and fatty acid composition. Meat Sci. 95, 98–109, https://doi.org/10.1016/j.meatsci.2013.03.033
50. Mapiye C., Turner T.D., Rolland D.C., Basarab J.A., Baron V.S., McAllister T.A., Block H.C., Uttaro B., Aalhus J.L., Dugan M.E.R., 2013a. Adipose tissue and muscle fatty acid profiles of steers fed red clover silage with and without flaxseed. Livest. Sci. 151, 11–20, https://doi.org/10.1016/j.livsci.2012.10.021
51. Mapiye C., Vahmani P, Mlambo V., Muchenje V., Dzama K., Hoffman L.C., Dugan M.E.R., 2015. The trans-octadecenoic fatty acid profile of beef: Implications for global food and nutrition security. Food Res. Int. 76, 992–1000, https://doi.org/10.1016/j.foodres.2015.05.001
52. Melo I.L.P., de Carvalho E.B.T., Silva A.M.O, Yoshmine L.T., Sattler J.A.G., Pavan R.T., Mancini-Filho J., 2016. Characterization of constituents, quality and stability of pomegranate seed oil (Punica granatum L.). Food Sci. Technol. 36, 132–139, https://doi.org/10.1590/1678-457X.0069
53. Mills S., Ross R.P., Hill C., Fitzgerald G.F., Stanton C., 2011. Milk intelligence: Mining milk for bioactive substances associated with human health. Int. Dairy J. 21, 377–401, https://doi.org/10.1016/j.idairyj.2010.12.011
54. Modaresi J., Fathi Nasri M.H., Rashidi L., Dayani O., Kebreab E., 2011. Effect of supplementation with pomegranate seed pulp on concentrations of conjugated linoleic acid and punicic acid in goat milk. J. Dairy Sci. 94, 4075–4080, https://doi.org/10.3168/jds.2010-4069
55. Nekooeian A.A., Eftekhari M.H., Adibi S., Rajaeifard A., 2014. Effect of pomegranate seed oil on insulin release in rats with type 2 diabetes. Iran. J. Med. Sci. 39, 130–135
56. Ogawa J., Kishino S., Ando A., Sugimoto S., Mihara K., Shimizu S., 2005. Production of conjugated fatty acids by lactic acid bacteria. J. Biosci. Bioeng. 100, 355–364, https://doi.org/10.1263/jbb.100.355
57. Park Y., Pariza M.W., 2007. Mechanisms of body fat modulation by conjugated linoleic acid (CLA). Food Res. Int. 40, 311–323, https://doi.org/10.1016/j.foodres.2006.11.002
58. Pariza M.W., Ashoor S.H., Chu F.S., Lund D.B., 1979. Effects of temperature and time on mutagen formation in pan-fried hamburger. Cancer Lett. 7, 63–69, https://doi.org/10.1016/S0304-3835(79)80097-X
59. Pariza M.W., Park Y., Cook M.E., 1999. Conjugated linoleic acid and the control of cancer and obesity. Toxicol. Sci. 52, Suppl. 1, 107–110, https://doi.org/10.1093/toxsci/52.suppl_1.107
60. Petersen M.B., 2014. The effect of forbs on rumen biohydrogenation of fatty acids and bovine milk fatty acid composition. PhD Thesis, Aarhus University, Aarhus (Denmark)
61. Plourde M., Destaillats F., Chouinard P.Y., Angers P., 2007. Conjugated α-linolenic acid isomers in bovine milk and muscle. J. Dairy Sci., 90, 5269–5275, https://doi.org/10.3168/jds.2007-0157
62. Plourde M., Sergiel J.-P., Chardigny J.-M., Grégoire S., Angers P., Sébédio J.-L., 2006. Absorption and metabolism of conjugated α-linolenic acid given as free fatty acids or triacyloglycerols in rats. Nutr. Metab. 3, 8, https://doi.org/10.1186/1743-7075-3-8
63. Ray R.B., Raychoudhuri A., Steele R., Nerurkar P., 2010. Bitter Melon (Momordica charantia) extract inhibits breast cancer cell proliferation by modulating cell cycle regulatory genes and promotes apoptosis. Cancer Res. 70, 1925–1931, https://doi.org/10.1158/0008-5472.CAN-09-3438
64. Razzaghi A., Naserian A.A., Valizadeh R., Ebrahimi S.H., Khorrami B., Malekkhahi M., Khiaosa-ard R., 2015. Pomegranate seed pulp, pistachio hulls and tomato pomace as replacement of wheat bran increased milk conjugated linoleic acid concentrations without adverse effects on ruminal fermentation and performance of Saanen dairy goats. Anim. Feed Sci. Technol. 210, 46-55, https://doi.org/10.1016/j.anifeedsci.2015.09.014
65. Rego O.A., Alves S.P., Antunes L.M.S., Rosa H.J.D., Alfaia C.F.M., Prates J.A.M., Cabrita A.R.J., Fonseca A.J.M., Bessa R.J.B., 2009. Rumen biohydrogenation-derived fatty acids in milk fat from grazing dairy cows supplemented with rapeseed, sunflower, or linseed oils. J. Dairy Sci. 92, 4530–4540, https://doi.org/10.3168/jds.2009-2060
66. Roach J.A.G., Mossoba M.M., Yurawecz M.P., Kramer J.K.G., 2002. Chromatographic separation and identification of conjugated linoleic acid isomers. Anal. Chim. Acta 465, 207–226, https://doi.org/10.1016/S0003-2670(02)00193-9
67. Saha S.S., Ghosh M., 2009. Comparative study of antioxidant activity of α-eleostearic acid and punicic acid against oxidative stress generated by sodium arsenite. Food Chem. Toxicol. 47, 2551–2556, https://doi.org/10.1016/j.fct.2009.07.012
68. Saliba L., Gervais R., Lebeuf Y., Chouinard P.Y., 2014. Effect of feeding linseed oil in diets differing in forage to concentrate ratio: 1. Production performance and milk fat content of biohydrogenation intermediates of α-linolenic acid. J. Dairy Res. 81, 82–90, https://doi.org/10.1017/S0022029913000691
69. Shingfield K.J., Bernard L., Leroux C., Chilliard Y., 2010a. Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal 4, 1140–1166, https://doi.org/10.1017/S1751731110000510
70. Shingfield K.J., Bonnet M., Scollan N.D., 2013. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 7, Suppl. 1, 132–162, https://doi.org/10.1017/S1751731112001681
71. Shingfield K.J., Lee M.R.F., Humphries D.J., Scollan N.D., Toivonen V., Reynolds C.K., Beever D.E., 2010b. Effect of incremental amounts of fish oil in the diet on ruminal lipid metabolism in growing steers. Br. J. Nutr. 104, 56–66, https://doi.org/10.1017/S0007114510000292
72. Shinohara N., Tsuduki T., Ito J. et al., 2012. Jacaric acid, a linolenic acid isomer with a conjugated triene system, has a strong antitumor effect in vitro and in vivo. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1821, 980–988, https://doi.org/10.1016/j.bbalip.2012.04.001
73. Sinclair L.A, 2007. Nutritional manipulation of the fatty acid composition of sheep meat: a review. J. Agric. Sci. 145, 419–434, https://doi.org/10.1017/S0021859607007186
74. Stolyhwo A., Rutkowska J., 2013. An improved silver ion HPLC combined with capillary gas chromatography of cis/trans fatty acids in alimentary fats and human milk fat. Food Anal. Methods 6, 457–469, https://doi.org/10.1007/s12161-012-9454-y
75. Tanaka K., 2005. Occurrence of conjugated linoleic acid in ruminant products and its physiological functions. Animal Sci. J. 76, 291–303, https://doi.org/10.1111/j.1740-0929.2005.00268.x
76. Tsuzuki T., Kawakami Y., Abe R., Nakagawa K., Koba K., Imamura J., Iwata T., Ikeda I., Miyazawa T., 2006. Conjugated linolenic acid is slowly absorbed in rat intestine, but quickly converted to conjugated linoleic acid. J. Nutr. 136, 2153–2159
77. Tsuzuki T., Tokuyama Y., Igarashi M., Nakagawa K., Ohsaki Y., Komai M., Miyazawa T., 2004. α-Eleostearic acid (9z11E13E-18:3) is quickly converted to conjugated linoleic acid (9Z11E-18:2) in rats. J. Nutr. 134, 2634–2639
78. Turner T.D., Meadus W.J., Mapiye C., Vahmani P., López-Campos O., Duff P., Rolland D.C., Church J.S., Dugan M.E.R., 2015. Isolation of α-linolenic acid biohydrogenation products by combined silver ion solid phase extraction and semi-preparative high performance liquid chromatography. J. Chromatogr. B 980, 34–40, https://doi.org/10.1016/j.jchromb.2014.11.038
79. Vroegrijk I.O.C.M., van Diepen J.A., van den Berg S. et al., 2011. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food Chem. Toxicol. 49, 1426–1430, https://doi.org/10.1016/j.fct.2011.03.037
80. Wallace R.J., McKain N., Shingfield K.J., Devillard E., 2007. Isomers of conjugated linoleic acids are synthesized via different mechanisms in ruminal digesta and bacteria. J. Lipid Res. 48, 2247–2254, https://doi.org/10.1194/jlr.M700271-JLR200
81. Wąsowska I., Maia M.R.G., Niedźwiedzka K.M., Czauderna M., Ramalho Ribeiro J.M.C., Devillard E., Shingfield K.J., Wallace R.J., 2006. Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Br. J. Nutr. 95, 1199–1211, https://doi.org/10.1079/BJN20061783
82. Wood J.D., Enser M., Fisher A.V., Nute G.R., Sheard P.R., Richardson R.I., Hughes S.I., Whittington F.M., 2008. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 78, 343–358, https://doi.org/10.1016/j.meatsci.2007.07.019
83. Yasui Y., Hosokawa M., Kohno H., Tanaka T., Miyashita K., 2006. Growth inhibition and apoptosis induction by all-trans-conjugated linolenic acids on human colon cancer cells. Anticancer Res. 26, 1855–1860
84. Yuan G., Sinclair A.J., Xu C., Li D., 2009a. Incorporation and metabolism of punicic acid in healthy young humans. Mol. Nutr. Food Res. 53, 1336–1342, https://doi.org/10.1002/mnfr.200800520
85. Yuan G.-F., Chen X.-E., Li D., 2014. Conjugated linolenic acids and their bioacitivities: a review. Food Funct. 5, 1360–1368, https://doi.org/10.1039/c4fo00037d
86. Yuan G.-F., Sinclair A.J., Sun H.-Y., Li D., 2009b. Fatty acid composition in tissues of mice fed diets containing conjugated linolenic acid and conjugated linoleic acid. J. Food Lipids 16, 148–163, https://doi.org/10.1111/j.1745-4522.2009.01138.x
87. Yuan G.-F., Wahlqvist M.L., Yuan J.-Q., Wang Q.-M., Li D., 2009c. Effect of punicic acid naturally occurring in food on lipid peroxidation in healthy young humans. J. Sci. Food Agric. 89, 2331–2335, https://doi.org/10.1002/jsfa.3729
88. Zened A., Troegeler-Meynadier A., Nicot M.C., Combes S., Cauquil L., Farizon Y., Enjalbert F., 2011. Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminal biohydrogenation of linoleic and linolenic acids. J. Dairy Sci., 94, 5634–5645, https://doi.org/10.3168/jds.2011-4491