Protein quality plays a pivotal and dynamic role in the growth, productivity, and reproduction of ruminants. Increasing the proportion of dietary protein (CP) alone cannot balance the concentration of limiting amino acids (AA) in the duodenum of high-yielding dairy cows. However, supplying rumen-protected AA is believed to improve productivity and reproduction rates. Malabsorption of CP-rich meals in the rumen leads to high nitrogen (N) excretion through urine and faeces in the form of nitric oxide, nitrous oxide, ammonia and nitrate in the environment. Research data indicate that lysine and methionine are the two most limiting AA in the ruminant ration. Supplementing these limiting AA in ruminant diets is one of the most effective strategies to improve CP usage and reduce the negative impact of CP in the diet. Several in vivo and in vitro experimental studies have demonstrated that even low-quality dietary CP, when supplemented with rumen-protected AA (Met + Lys), exhibited a greater ability to reduce N2 or NH3 losses, while also supporting a decrease in enteric fermentation gas production and minimising soil or water pollution associated with animal production. However, further research is necessary to explore the molecular and genetic mechanisms underlying the effects of AA dietary supplementation on the rumen microbiota in ruminants.
The Authors declare that there is no conflict of interest.
Abbasi I.H.R., Sahito H.A., Abbasi Farzan A., Menghwar D.R., Kaka N.A., Sanjrani M.I., 2014. Impact of different crude protein levels on growth of lambs under intensive management system. Int. J. Adv. Res. 2, 227–235.
Abbasi I.H.R., Abbasi F., Liu L., Bodinga B.M., Abdel-Latif M.A., Swelum A.A., Mohamed M.A.E., Cao Y., 2019. Rumen-protected methionine a feed supplement to low dietary protein: effects on microbial population, gases production and fermentation characteristics. AMB Express. 9, 1–10,
Agle M., Hristov A.N., Zaman S., Schneider C., Ndegwa P., Vaddella V.K., 2010. The effects of ruminally degraded protein on rumen fermentation and ammonia losses from manure in dairy cows. J. Dairy Sci. 93, 1625–1637,
Agwaan H.K., 2023. Some physiological effect of different protein sources in ruminants ration: a comparative review. J. Appl. Vet. Sci. 8,
Ahmadi A., Abbaspour M., Arjmandi R., Abedi Z., 2015. Air Quality Risk Index (AQRI) and its application for a megacity. Int. J. Environ. Sci. Technol. 12, 3773–3780,
Ali C.S., Sharif M., Nisa M., Javaid A., Hashmi N., Sarwar M., 2009. Supplementation of ruminally protected proteins and amino acids: feed consumption, digestion and performance of cattle and sheep. Int. J. Agric. Biol. 11, 477–482.
Archibeque S.L., Burns J.C., Huntington G.B., 2002. Nitrogen metabolism of beef steers fed endophyte-free tall fescue hay: effects of ruminally protected methionine supplementation. J. Anim. Sci. 80, 1344–1351,
Arogo J., Westerman P.W., Heber A.J., 2003. a review of ammonia emissions from confined swine feeding operations. Trans. ASAE. 46, 805,
Ayyat M.S., Al-Sagheer A., Noreldin A.E., Abd El-Hack M.E., Khafaga A.F., Abdel-Latif M.A., Swelum A.A., Arif M., Salem A.Z., 2021. Beneficial effects of rumen-protected methionine on nitrogen use efficiency, histological parameters, productivity and reproductive performance of ruminants. Anim. Biotechnol. 32, 51–66,
Bahrami-Yekdangi M., Ghorbani G.R., Khorvash M., Khan M.A., Ghaffari M.H., 2016. Reducing crude protein and rumen degradable protein with a constant concentration of rumen undegradable protein in the diet of dairy cows: Production performance, nutrient digestibility, nitrogen efficiency, and blood metabolites. J. Anim. Sci. 94, 718–725,
Bhatta R., Saravanan M., Baruah L., Prasad C.S., 2015. Effects of graded levels of tannin containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. J. Appl. Microbiol. 118, 557–564,
Bouwman L., Goldewijk K.K., Van Der Hoek K.W., Beusen A.H., Van Vuuren D.P., Willems J., Rufino M.C., Stehfest E., 2013. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. PNAS. 110, 20882–20887,
Broderick G.A., Stevenson M.J., Patton R.A., Lobos N.E., Colmenero J.O., 2008. Effect of supplementing rumenprotected methionine on production and nitrogen excretion in lactating dairy cows. J. Dairy Sci. 91, 1092–1102,
Castillo A.R., Kebreab E., Beever D.E., Barbi J.H., Sutton J.D., Kirby H.C., France J., 2001. The effect of protein supplementation on nitrogen utilization in lactating dairy cows fed grass silage diets. J. Anim. Sci. 79, 247–253,
Choi C.W., Vanhatalo A., Ahvenjärvi S., Huhtanen P., 2002. Effects of several protein supplements on flow of soluble nonammonia nitrogen from the forestomach and milk production in dairy cows. Anim. Feed Sci. Technol. 102, 15–33,
Chojnacka K., Mikula K., Izydorczyk G., Skrzypczak D., Witek-Krowiak A., Gersz A., Moustakas K., Iwaniuk J., Grzędzicki M., Korczyński M., 2021. Innovative high digestibility protein feed materials reducing environmental impact through improved nitrogen-use efficiency in sustainable agriculture. J. Environ. Manage. 291, 112693,
Clark H., Kelliher F., Pinares-Patino C., 2010. Reducing CH4 emissions from grazing ruminants in New Zealand: challenges and opportunities. Asian-Australas. J. Anim. Sci. 24, 295–302,
Cole N.A., Clark R.N., Todd R.W., Richardson C.R., Gueye A., Greene L.W., Mcbride K., 2005. Influence of dietary crude protein concentration and source on potential ammonia emissions from beef cattle manure. J. Anim. Sci. 83, 722–731,
Davidson S., Hopkins B.A., Odle J., Brownie C., Fellner V., Whitlow L.W., 2008. Supplementing limited methionine diets with rumen-protected methionine, betaine, and choline in early lactation Holstein cows. J. Dairy Sci. 91, 1552–1559,
De-Bashan L.E., Bashan Y., 2004. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res. 38, 4222–4246,
Dijkstra J., Van Zijderveld S.M., Apajalahti J.A., Bannink A., Gerrits W.J.J., Newbold J.R., Perdok H.B., Berends H., 2011. Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim. Feed Sci. Technol. 166, 590–595,
Epa U., 2001. United States environmental protection agency. Quality assurance guidance document-model quality assurance project plan for the PM ambient air, 2, 12.
Erisman J.W., Bleeker A., Hensen A., Vermeulen A., 2008. Agricultural air quality in Europe and the future perspectives. Atmos. Environ. 42, 3209–3217,
Fathi M.M., Galal A., Al-Homidan I., Abou-Emera O.K., Rayan G.N., 2021. Residual feed intake: a limiting economic factor for selection in poultry breeding programs. Ann. Agric. Sci. 66, 53–57,
Ferla M.P., Patrick W.M., 2014. Bacterial methionine biosynthesis. Microbiology 160, 1571–1584,
Fleming A.J., Estes K.A., Choi H., Barton B.A., Zimmerman C.A., Hanigan M.D., 2019. Assessing bioavailability of ruminally protected methionine and lysine prototypes. J. Dairy Sci. 102, 4014–4024,
Gerber P.J., Steinfeld H., Henderson B., Mottet A., Opio C., Dijkman J., Falcucci A., Tempio G., 2013. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO).
Gilbreath K.R., Bazer F.W., Satterfield M.C., Wu G., 2021. Amino acid nutrition and reproductive performance in ruminants. Amino Acids in Nutrition and Health: Amino acids in the nutrition of companion, zoo and farm animals, Springer, Cham (Switzerland), pp. 43–61,
Haque M.N., Rulquin H., Andrade A., Faverdin P., Peyraud J.L., Lemosquet S., 2012. Milk protein synthesis in response to the provision of an “ideal” amino acid profile at 2 levels of metabolizable protein supply in dairy cows. J. Dairy Sci. 95, 5876–5887,
Higueras P., Oyarzun R., Oyarzún J., Maturana H., Lillo J., Morata D., 2004. Environmental assessment of copper–gold–mercury mining in the Andacollo and Punitaqui districts, northern Chile. Appl. Geochemistry. 19, 1855–1864,
Hill T.M., Bateman II, H.G., Quigley III, J.D., Aldrich J.M., Schlotterbeck R.L., Heinrichs A.J., 2013. New information on the protein requirements and diet formulation for dairy calves and heifers since the Dairy NRC 2001. Prof. Anim. Sci. 29, 199–207,
Ho J.Y., Jong M.C., Acharya K., Liew S.S.X., Smith D.R., Noor Z.Z.,Goodson M.L., Werner D., Graham D.W., Eswaran J., 2021. Multidrug-resistant bacteria and microbial communities in a river estuary with fragmented suburban waste management. J. Hazard. Mater. 405, 124687,
Hou Y., Hu S., Li X., He W., Wu G., 2020. Amino acid metabolism in the liver: nutritional and physiological significance. Amino Acids Nutr. Heal. 21–37,
Howarth R.W., Marino R., 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol. Oceanogr. 51, 364–376,
Hristov A.N., Oh J., Firkins J.L., Dijkstra J., Kebreab E., Waghorn G., Makkar H.P.S., Adesogan A.T., Yang W., Lee C., Gerber P.J., 2013. Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. a review of enteric methane mitigation options. J. Anim. Sci. 91, 5045–5069,
Hristov A.N., Bannink A., Crompton L.A., Huhtanen P., Kreuzer M., McGee M., Nozière P., Reynolds C.K., Bayat A.R., Yáñez-Ruiz D.R., Dijkstra J., 2019. Invited review: Nitrogen in ruminant nutrition: a review of measurement techniques. J. Dairy Sci. 102, 5811–5852,
Janssen P.H., 2010. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160, 1–22,
Katongole C.B., Yan T., 2020. Effect of varying dietary crude protein level on feed intake, nutrient digestibility, milk production, and nitrogen use efficiency by lactating Holstein-Friesian cows. Animals 10, 2439,
Kaya I., Ünal Y., Sahin T., Elmali D., 2009. Effect of different protein levels on fattening performance, digestibility and rumen parameters in finishing lambs. J. Anim. Vet. Adv. 8, 309–312.
Khan S.A., Muhammad S., Nazir S., Shah F.A., 2020. Heavy metals bounded to particulate matter in the residential and industrial sites of Islamabad, Pakistan: implications for non-cancer and cancer risks. Environ. Technol. Innov. 19, 100822,
Kim J.E., Lee H.G., 2021. Amino acids supplementation for the milk and milk protein production of dairy cows. Animals. 11, 2118,
Kirwan S.F., Pierce K.M., Serra E., McDonald M., Rajauria G., Boland T.M., 2021. Effect of chitosan inclusion and dietary crude protein level on nutrient intake and digestibility, ruminal fermentation, and N excretion in beef heifers offered a grass silage based diet. Animals 11, 771,
Koenig K.M., Newbold C.J., McIntosh F.M., Rode L.M., 2000. Effects of protozoa on bacterial nitrogen recycling in the rumen. J. Anim. Sci. 78, 2431–2445,
Kröber T.F., Külling D.R., Menzi H., Sutter F., Kreuzer M., 2000. Quantitative effects of feed protein reduction and methionine on nitrogen use by cows and nitrogen emission from slurry. J. Dairy Sci. 83, 2941–2951,
Król B., Słupczyńska M., Wilk M., Asghar M. U., Cwynar P., 2023. Anaerobic rumen fungi and fungal direct-fed microbials in ruminant feeding. J. Anim. Feed Sci. 32, 3–16,
Kupper T., Häni C., Neftel A., Kincaid C., Bühler M., Amon B., VanderZaag A., 2020. Ammonia and greenhouse gas emissions from slurry storage—A review. Agric. Ecosyst. Environ. 300, 106963,
Lapierre H., Pacheco D., Berthiaume R., Ouellet D.R., Schwab C.G., Dubreuil P., Holtrop G., Lobley G.E., 2006. What is the true supply of amino acids for a dairy cow?. J. Dairy Sci. 89, E1–E14,
Laudadio V., Tufarelli V., 2010. Effects of pelleted total mixed rations with different rumen degradable protein on milk yield and composition of Jonica dairy goat. Small Rumin. Res. 90, 47–52,
Lee C., Lobos N.E., Weiss W.P., 2019. Effects of supplementing rumen-protected lysine and methionine during prepartum and postpartum periods on performance of dairy cows. J. Dairy Sci. 102, 11026–11039,
Leonardi C., Stevenson M., Armentano L.E., 2003. Effect of two levels of crude protein and methionine supplementation on performance of dairy cows. J. Dairy Sci. 86, 4033–4042,
Lobos N.E., Wattiaux M.A., Broderick G.A., 2021. Effect of rumen-protected lysine supplementation of diets based on corn protein fed to lactating dairy cows. J. Dairy Sci. 104, 6620–6632,
Majumdar D., Gupta N., 2000. Nitrate pollution of groundwater and associated human health disorders. Indian J. Environ. Health. 42, 28–39.
Makkar H.P., 2016. Animal nutrition in a 360-degree view and a framework for future R&D work: towards sustainable livestock production. Anim. Prod. Sci. 56, 1561–1568,
Mavrommatis A., Mitsiopoulou C., Christodoulou C., Kariampa P., Simoni M., Righi F., Tsiplakou E., 2021. Effects of supplementing rumen-protected methionine and lysine on milk performance and oxidative status of dairy ewes. Antioxidants 10, 654,
McCabe C.J., Boerman J.P., 2020. Invited Review: Quantifying protein mobilization in dairy cows during the transition period. Appl. Anim. Sci. 36, 389–396,
McGinn S.M., Janzen H.H., Coates T., 2003. Atmospheric ammonia, volatile fatty acids, and other odorants near beef feedlots. J. Environ. Qual. 32, 1173–1182,
Møller H.B., Sørensen P., Olesen J.E., Petersen S.O., Nyord T., Sommer S.G., 2022. Agricultural biogas production—climate and environmental impacts. Sustainability 14, 1849,
Mohd Azmi A.F., Ahmad H., Mohd N.N., Goh Y.M., Zamri-Saad M., Abu Bakar M.Z., Salleh A., Abdullah P., Jayanegara A., Abu Hassim H., 2021. The impact of feed supplementations on Asian buffaloes: a review. Animals 11, 2033,
Nadeau E., Englund J.E., Gustafsson A.H., 2007. Nitrogen efficiency of dairy cows as affected by diet and milk yield. Livest. Sci. 111, 45–56,
National Research Council (NRC), 2001. Nutrient requirements of dairy cattle. 7th revised Ed. National Academy Press. Washington, DC (USA).
Nocek J.E., Socha M.T., Tomlinson D.J., 2006. The effect of trace mineral fortification level and source on performance of dairy cattle. J. Dairy Sci., 89, 2679–2693,
Noftsger S., St-Pierre N.R., 2003. Supplementation of methionine and selection of highly digestible rumen undegradable protein to improve nitrogen efficiency for milk production. J. Dairy Sci. 86, 958–969,
Park J.K., Yeo J.M., Bae G.S., Kim E.J., Kim C.H., 2020. Effects of supplementing limiting amino acids on milk production in dairy cows consuming a corn grain and soybean meal-based diet. J. Anim. Sci. Technol. 62, 485,
Patton R.A., 2010. Effect of rumen-protected methionine on feed intake, milk production, true milk protein concentration, and true milk protein yield, and the factors that influence these effects: a meta-analysis. J. Dairy Sci. 93, 2105–2118,
Powell J.M., Broderick G.A., 2011. Transdisciplinary soil science research: Impacts of dairy nutrition on manure chemistry and the environment. Soil Sci. Soc. Am. J. 75, 2071–2078,
Reynal S.M., Broderick G.A., 2005. Effect of dietary level of rumen-degraded protein on production and nitrogen metabolism in lactating dairy cows. J. Dairy Sci. 88, 4045–4064,
Robinson P.H., Givens D.I., Getachew G., 2004. Evaluation of NRC, UC Davis and ADAS approaches to estimate the metabolizable energy values of feeds at maintenance energy intake from equations utilizing chemical assays and in vitro determinations. Anim. Feed Sci. Technol. 114, 7590,
Roque B.M., Salwen J.K., Kinley R., Kebreab E., 2019. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 234, 132–138,
Schumacher E.A., 2020. Evaluation of protein sources and Holstein finishing systems for organic beef production and a comparison of single and dual implant strategies in finishing heifers. University of Nebraska-Lincoln. a Thesis.
Schwab C.G., Ordway R.S., Whitehouse N.L., 2003. Amino acid balancing in the context of MP and RUP requirements. In Proc. Four-State Appl. Dairy Nutr. Manage. Conf., Lacrosse, WI. Midwest Plan Service, Iowa State University, Ames, June: (25-34).
Smith A.P., Christie K.M., Harrison M.T., Eckard R.J., 2021. Ammonia volatilisation from grazed, pasture based dairy farming systems. Agric. Syst. 190, 103–119,
Socha M.T., Putnam D.E., Garthwaite B.D., Whitehouse N.L., Kierstead N.A., Schwab C.G., Ducharme G.A., Robert J.C., 2005. Improving intestinal amino acid supply of pre-and postpartum dairy cows with rumen-protected methionine and lysine. J. Dairy Sci. 88, 1113–1126,
Sommer S.G., Schjoerring J.K., Denmead O.T., 2004. Ammonia emission from mineral fertilizers and fertilized crops. Adv. Agron. 82(557622), 82008–82004,
Spears R.A., Kohn R.A., Young A.J., 2003. Whole-farm nitrogen balance on western dairy farms. J. Dairy Sci. 86, 4178–4186,
Steinfeld H., Gerber P., Wassenaar T.D., Castel V., Rosales M., Rosales M., de Haan C., 2006. Livestock’s long shadow: environmental issues and options. Food & Agriculture Org., Rome, pp. 377.
Stošić M., Ivezić V., Tadić V., 2021. Tillage systems as a function of greenhouse gas (GHG) emission and fuel consumption mitigation. Environ. Sci. Pollut. Res. 28, 16492–16503,
Titi H.H., Azzam S.I., Alnimer M.A., 2013. Effect of protected methionine supplementation on milk production and reproduction in first calf heifers. Arch. Anim. Breed. 56, 225–236,
Tufarelli V., Dario M., Laudadio V., 2009. Milk yield and composition of lactating Comisana ewes fed total mixed rations containing nitrogen sources with different ruminal degradability. Livest. Sci. 122, 349–353,
Vanhatalo A., Varvikko T., Huhtanen P., 2003. Effects of casein and glucose on responses of cows fed diets based on restrictively fermented grass silage. J. Dairy Sci. 86, 3260–3270,
Vasconcelos J.T., Tedeschi L.O., Fox D.G., Galyean M.L., Greene L.W., 2007. Feeding nitrogen and phosphorus in beef cattle feedlot production to mitigate environmental impacts. Prof. Anim. Sci. 23, 8–17,
Vijn S., Compart D.P., Dutta N., Foukis A., Hess M., Hristov A.N., Kalscheur K.F., Kebreab E., Nuzhdin S.V., Price N.N., Sun Y., 2020. Key considerations for the use of seaweed to reduce enteric methane emissions from cattle. Front. Vet. Sci. 1135,
Wathes C.M., Demmers T.G.M., Teer N. et al., 2004. Production responses of weaned pigs after chronic exposure to airborne dust and ammonia. Animal Sci. 78, 87–97,
Weiss W.P., St-Pierre N.R., Willett L.B., 2009. Varying type of forage, concentration of metabolizable protein, and source of carbohydrate affects nutrient digestibility and production by dairy cows. J. Dairy Sci. 92, 5595–5606,
Wright R.F., Alewell C., Cullen J.M., Evans C.D., Marchetto A., Moldan F., Prechtel A., Rogora M., 2001. Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Hydrol. Earth Syst. Sci. 5, 299–310,
Wu Z., Satter L.D., 2000. Milk production during the complete lactation of dairy cows fed diets containing different amounts of protein. J. Dairy Sci. 83, 1042–1051,
Xie C., Zhang S., Zhang G., Zhang F., Chu L., Qiao S., 2013. Estimation of the optimal ratio of standardized ileal digestible threonine to lysine for finishing barrows fed low crude protein diets. Asian-australas. J. Anim. Sci. 26, 1172,
Yan T., Mayne C.S., Gordon F.G., Porter M.G., Agnew R.E., Patterson D.C., Ferris C.P., Kilpatrick D.J., 2010. Mitigation of enteric methane emissions through improving efficiency of energy utilization and productivity in lactating dairy cows. J. Dairy Sci. 93, 2630–2638,
Zhang B., Chen G.Q., 2010. Methane emissions by Chinese economy: Inventory and embodiment analysis. Energy Policy. 38, 4304–4316,
Zhao K., Liu W., Lin X.Y., Hu Z.Y., Yan Z.G., Wang Y., Shi K.R., Liu G.M., Wang Z.H., 2019. Effects of rumen-protected methionine and other essential amino acid supplementation on milk and milk component yields in lactating Holstein cows. J. Dairy Sci. 102, 7936–7947,
Zou S., Ji S., Xu H., Wang M., Li B., Shen Y., Li Y., Gao Y., Li J., Cao Y., Li Q., 2023. Rumen-protected lysine and methionine supplementation reduced protein requirement of holstein bulls by altering nitrogen metabolism in liver. Animals 13, 843,