CC-BY 4.0

The possible application of fungal enriched substrates in ruminant nutrition. A review

Z. Varadyova 1  ,  
M. Certik 2,  
Slovak Academy of Sciences, Institute of Animal Physiology, Centre of Biosciences, Šoltésovej 4-6, 040 01 Košice, Slovak Republic
Slovak University of Technology, Faculty of Chemical and Food Technology, Department of Biochemical Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
J. Anim. Feed Sci. 2018;27(1):3–10
Publish date: 2018-02-19
Microbial utilization of raw agro-substrates by solid-state fermentation (SSF) leads to an effective enrichment of prefermented cereal-derived substrates (PCS) with oleaginous fungi being a source of γ-linolenic acid (GLA, 18:3n-6). Such method could open up new possibilities in animal nutrition. In this review, the nutritional effects of various PCS used as components of basal diets are summarized through the integrating related studies. PCS with two oleaginous fungi (Thamnidium elegans and Cunninghamella echinulata) as GLA sources were described. Apart from fatty acids, other related fermentation parameters i.e. digestibility of dry matter, neutral detergent fibre, acid detergent fibre, methane and ammonia concentration, short-chain fatty acid profiles and protozoal counts were taken into account. The effectiveness of GLA sources in increasing ruminal GLA outputs varied, depending on the filamentous fungi used, in the order C. echinulate > T. elegans, but efficiency also depends on the cereal substrate type. However, in vivo studies are needed to determine the impact of using cereal substrates enriched with oleaginous fungi as a source of GLA on rumen metabolism as well as the quality of ruminant meat and dairy products.
Z. Varadyova   
Slovak Academy of Sciences, Institute of Animal Physiology, Centre of Biosciences, Šoltésovej 4-6, 040 01 Košice, Slovak Republic
1. Bauman D.E., Baumgard L.H., Corl B.A., Griinari J.M., 1999. Biosynthesis of conjugated linoleic acid in ruminants. J. Anim. Sci. 77, Suppl. E, 1–15, https://doi.org/10.2527/jas2000.77E-Suppl1f.
2. Beam T.M., Jenkins T.C., Moate P.J., Kohn R.A., Palmquist D.L., 2000. Effects of amount and source of fat on the rates of lipolysis and biohydrogenation of fatty acids in ruminal contents. J. Dairy Sci. 83, 2564–2573, https://doi.org/10.3168/jds.S0022-0302(00)75149-6 .
3. Beauchemin K.A., McGinn S.M., Petit H.V., 2007. Methane abatement strategies for cattle: lipid supplementation of diets. Can. J. Anim. Sci. 87, 431–440, https://doi.org/10.4141/CJAS07011.
4. Bellou S., Triantaphyllidou I.E., Aggeli D., Elazzazy A.M., Baeshen M.N., Aggelis G., 2016. Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr. Opin. Biotechnol. 37, 24–35, https://doi.org/10.1016/j.copbio.2015.09.005.
5. Certik M., Adamechova Z., 2009. Cereal-based bioproducts containing polyunsaturated fatty acids. Lipid Technol. 21, 250–253, https://doi.org/10.1002/lite.200900058.
6. Certik M., Adamechova Z., Slavikova L., 2010. Biotechnological enrichment of cereals with polyunsaturated fatty acids. In: C.T. Hou, J.-F. Shaw (Editors). Biocatalysis and Biomolecular Engineering. John Wiley & Sons, Inc. Hoboken, NJ (USA), pp. 175–193, https://doi.org/10.1002/9780470608524.ch12.
7. Čertík M., Adamechová Z., Guothová L., 2013a. Simultaneous enrichment of cereals with polyunsaturated fatty acids and pigments by fungal solid state fermentations. J. Biotechnol. 168, 130–134, https://doi.org/10.1016/j.jbiotec.2013.03.016.
8. Čertík M., Adamechová Z., Hanusová V., Breierová E., 2008. Biotechnology as a useful tool for nutritional improvement of cereal-based materials enriched with polyunsaturated fatty acids and pigments. Acta Agron. Hung. 56, 377–384, https://doi.org/10.1556/AAgr.56.2008.4.1.
9. Čertík M., Klempová T., Guothová L., Mihálik D., Kraic J., 2013b. Biotechnology for the functional improvement of cereal-based materials enriched with PUFA and pigments. Eur. J. Lipid Sci. Technol. 115, 1247–1256, https://doi.org/10.1002/ejlt.201300092.
10. Čertík M., Klempová T., Jalč D., Váradyová Z., Marcinčák S., 2017. Biotechnologically enriched cereals with PUFAs in ruminant and chicken nutrition. In: C.C. Akoh (Editor). Food Lipids: Chemistry, Nutrition, and Biotechnology. 4th Edition. CRC Press, Taylor & Francis Group. Boca Raton, FL (USA), pp. 765–778.
11. Čertík M., Sláviková L., Masrnová S., Šajbidor J., 2006. Enhancement of nutritional value of cereals with γ-linolenic acid by fungal solidstate fermentations. Food Technol. Biotechnol. 44, 75–82.
12. Chen G., Russell J.B., 1989. More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl. Environ. Microbiol. 55, 1052–1057.
13. Cieślak A., El-Sherbiny M., Szczechowiak J., Kowalczyk D., Pers-Kamczyc E., Bryszak M., Szulc P., Jóźwik A., Szumacher-Strabel M., 2015. Rapeseed and fish oil mixtures supplied at low dose can modulate milk fatty acid composition without affecting rumen fermentation and productive parameters in dairy cows. Anim. Sci. Pap. Rep. 33, 357–372.
14. Cieślak A., Miltko R., Bełżecki G., Szumacher-Strabel M., Michałowski T., 2009a. Rumen ciliates Entodinium caudatum, Eudiplodinium maggii and Diploplastron affine: a potential reservoir of unsaturated fatty acids for the host. Acta Protozool. 48, 333–338.
15. Cieślak A., Váradyová Z., Kišidayová S., Szumacher-Strabel M., 2009b. The effects of linoleic acid on the fermentation parameters, population density, and fatty-acid profile of two rumen ciliate cultures, Entodinium caudatum and Diploplastron affine. Acta Protozool. 48, 51–61.
16. Cozzi G., Polan C.E., 1994. Corn gluten meal or dried brewers grains as partial replacement for soybean meal in the diet of Holstein cows. J. Dairy Sci. 77, 825–834, https://doi.org/10.3168/jds.S0022-0302(94)77017-X.
17. Czerkawski J.W., Breckenridge G., 1977. Design and development of a long-term rumen simulation technique (Rusitec). Br. J. Nutr. 38, 371–384, https://doi.org/10.1079/BJN19770102.
18. Doreau M., Legay F., Bauchart D., 1991. Effect of source and level of supplemental fat on total and ruminal organic matter and nitrogen digestion in dairy cows. J. Dairy Sci. 74, 2233–2242, https://doi.org/10.3168/jds.S0022-0302(91)78396-3.
19. El-Sherbiny M., Cieślak A., Szczechowiak J., Kołodziejski P., Szulc P., Szumacher-Strabel M., 2016. Effect of nanoemulsified oils addition on rumen fermentation and fatty acid proportion in a rumen simulation technique. J. Anim. Feed Sci. 25, 116–124, https://doi.org/10.22358/jafs/65571/2016.
20. Eschenlauer S.C.P., McKain N., Walker N.D., McEwan N.R., Newbold C.J., Wallace R.J., 2002. Ammonia production by ruminal microorganisms and enumeration, isolation, and characterization of bacteria capable of growth on peptides and amino acids from sheep rumen. Appl. Environ. Microbiol. 68, 4925–4931, https://doi.org/10.1128/AEM.68.10.4925-4931.2002.
21. Firkins J.L., Harvatine D.I., Sylvester J.T., Eastridge M.L., 2002. Lactation performance by dairy cows fed wet brewers grains or whole cottonseed to replace forage. J. Dairy Sci. 85, 2662–2668, https://doi.org/10.3168/jds.S0022-0302(02)74351-8.
22. Gano J.M., 2013. Amino acid-fermenting bacteria from the rumen of dairy cattle. Enrichment, isolation, characterization, and interaction with Entodinium caudatum. Master of Science Thesis. The Ohio State University, Columbus, OH (USA), pp. 1–128.
23. Hristov A.N., Ivan M., McAllister T.A., 2004. In vitro effects of individual fatty acids on protozoal numbers and on fermentation products in ruminal fluid from cattle fed a high-concentrate, barley-based diet. J. Anim. Sci. 82, 2693–2704, https://doi.org/10.2527/2004.8292693x.
24. Hristov A.N., Kennington L.R., McGuire M.A., Hunt C.W., 2005. Effect of diets containing linoleic acid- or oleic acid rich oils on ruminal fermentation and nutrient digestibility, and performance and fatty acid composition if adipose and muscle tissues of finishing cattle. J. Anim. Sci. 83, 1312–1321, https://doi.org/10.2527/2005.8361312x.
25. Ikwuegbu O.A., Sutton J.D., 1982. The effect of varying the amount of linseed oil supplementation on rumen metabolism in sheep. Br. J. Nutr. 48, 365–375, https://doi.org/10.1079/BJN19820120.
26. Jalc D., Potkanski A., Szumacher-Strabel M., Cieslak A., Certik M., 2005. Effect of microbial oil, evening primrose oil and borage oil on rumen fermentation in vitro. Vet. Med. Czech 50, 480–486.
27. Jalč D., Čertík M., 2005. Effect of microbial oil, monensin and fumarate on rumen fermentation in artificial rumen. Czech J. Anim. Sci. 50, 467–472.
28. Jalč D., Čertík M., Kundríková K., Kubelková P., 2009. Effect of microbial oil and fish oil on rumen fermentation and metabolism of fatty acids in artificial rumen. Czech J. Anim. Sci. 54, 229–237.
29. Jenkins T.C., 1993. Lipid metabolism in the rumen. J. Dairy Sci. 76, 3851–3863, https://doi.org/10.3168/jds.S0022-0302(93)77727-9.
30. Kišidayová S., Mihaliková K., Váradyová Z., Potkański A., Szumacher-Strabel M., Cieślak A., Čertík M., Jalč D., 2006. The effect of microbial oil, evening primrose oil, and borage oil on rumen ciliate populations in an artificial rumen (Rusitec). J. Anim. Feed Sci. 15, 153–156, https://doi.org/10.22358/jafs/70167/2006.
31. Laho T., Váradyová Z., Mihaliková K., Kišidayová S., Adamechová Z., Čertík M., Jalč D., 2011b. Effects of prefermented cerealderived substrates (ground barley and rye bran) enriched with fungal γ-linolenic acid on rumen fermentation parameters and lipid metabolism in vitro. J. Appl. Microbiol. 111, 537–546, https://doi.org/10.1111/j.1365-2672.2011.05073.x.
32. Laho T., Váradyová Z., Mihaliková K., Kišidayová S., Adamechová Z., Čertík M., Jalč D., 2011a. Prefermented cereals containing fungal gamma-linolenic acid and their effect on rumen metabolism in vitro. Czech J. Anim. Sci. 56, 325–335.
33. Machmüller A., Ossowski D.A., Wanner M., Kreuzer M., 1998. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (Rusitec). Anim. Feed Sci. Technol. 71, 117–130, https://doi.org/10.1016/S0377-8401(97)00126-0.
34. McDougall E.I., 1948. Studies on ruminant saliva. I. The composition and output of sheep’s saliva. Biochem. J. 43, 99–109, https://doi.org/10.1042/bj0430099.
35. Messana J.D., Berchielli T.T., Arcuri P.B., Reis R.A., Canesin R.C., Ribeiro A.F., Fiorentini G., Fernandes J.J.R., 2013. Rumen fermentation and rumen microbes in Nellore steers receiving diets with different lipid contents. Rev. Bras. Zootecn. 42, 204–212, https://doi.org/10.1590/S1516-35982013000300008.
36. Miyazawa K., Sultana H., Hirata T., Kanda S., Itabashi H., 2007. Effect of brewer’s grain on rumen fermentation, milk production and milk composition in lactating dairy cows. Anim. Sci. J. 78, 519–526, https://doi.org/10.1111/j.1740-0929.2007.00471.x.
37. Morgavi D.P., Martin C., Jouany J., Ranilla M.J., 2012. Rumen protozoa and methanogenesis: not a simple cause-effect relationship. Br. J. Nutr. 107, 388–397, https://doi.org/10.1017/S0007114511002935.
38. Mussatto S.I., 2014. Brewer’s spent grain: a valuable feedstock for industrial applications. J. Sci. Food Agric. 94, 1264–1275, https://doi.org/10.1002/jsfa.6486.
39. Mussatto S.I., Dragone G., Roberto I.C., 2006. Brewer’s spent grain: generation, characteristics and potential applications. J. Cereal Sci. 43, 1–14, https://doi.org/10.1016/j.jcs.2005.06.001.
40. Mussatto S.I., Fernandes M., Milagres A.M.F., Roberto I.C., 2008. Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme Microb. Technol. 43, 124–129, https://doi.org/10.1016/j.enzmictec.2007.11.006.
41. Newbold C.J., Stewart C.S., Wallace R.J., 2001. Developments in rumen fermentation: the scientist’s view. In: P.C. Garnsworthy, J. Wiseman (Editors). Recent Advances in Animal Nutrition. Nottingham University Press. Nottingham (UK), pp. 251–279.
42. Nocek J.E., Russell J.B., 1988. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci. 71, 2070–2107, https://doi.org/10.3168/jds.S0022-0302(88)79782-9.
43. Preston R.L., Vance R.D., Cahill V.R., 1973. Energy evaluation of brewers grains for growing and finishing cattle. J. Anim. Sci. 37, 174–178, https://doi.org/10.2527/jas1973.371174x.
44. Richardson A.J., McKain N., Wallace R.J., 2013. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids. BMC Microbiol. 13, 6, https://doi.org/10.1186/1471-2180-13-6.
45. Russell J.B., Onodera R., Hino T., 1991. Ruminal protein fermentation: new perspectives on previous contradictions. In: T. Tsuda, Y. Sasaki, R. Kawashima (Editors). Physiological Aspects of Digestion and Metabolism in Ruminants. Proceedings of the 7th International Symposium on Ruminant Physiology (Tokyo, Japan). Academic Press. San Diego, CA (USA), pp. 681–697, https://doi.org/10.1016/B978-0-12-702290-1.50034-5.
46. Russell J.B., Strobel H.J., Chen G.J., 1988. Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia concentration. Appl. Environ. Microbiol. 54, 872–877.
47. Shingfield K.J., Wallace R.J., 2014. Synthesis of conjugated linoleic acid in ruminants and humans. In: B. Sels, A. Philippaerts (Editors). Conjugated Linoleic Acids and Conjugated Vegetable Oils. Royal Society of Chemistry. London (UK), pp. 1–65, https://doi.org/10.1039/9781782620211-00001.
48. Sutton J.D., Knight R., McAllan A.B., Smith R.H., 1983. Digestion and synthesis in the rumen of sheep given diet supplemented with free and protected oils. Br. J. Nutr. 49, 419–432, https://doi.org/10.1079/BJN19830051.
49. Szczechowiak J., Szumacher-Strabel M., El-Sherbiny M., Pers-Kamczyc E., Pawlak P., Cieslak A., 2016. Rumen fermentation, methane concentration and fatty acid proportion in the rumen and milk of dairy cows fed condensed tannin and/or fish-soybean oils blend. Anim. Feed Sci. Technol. 216, 93–107, https://doi.org/10.1016/j.anifeedsci.2016.03.014.
50. Szumacher-Strabel M., Cieślak A., Nowakowska A., 2009. Effect of oils rich in linoleic acid on in vitro rumen fermentation parameters of sheep, goats and dairy cows. J. Anim. Feed Sci. 18, 440–452, https://doi.org/10.22358/jafs/66419/2009.
51. Szumacher-Strabel M., El-Sherbiny M., Cieslak A., Szczechowiak J., Winiarska H., 2015. Bioactive lipid components from ruminant milk and meat: The new face of human health. In: V.K. Gupta, M.G. Tuohy (Editors). Biotechnology of Bioactive Compounds: Sources and Applications. John Wiley & Sons, Ltd. Chichester (UK), pp. 599–629, https://doi.org/10.1002/9781118733103.ch25.
52. Toprak N.N., 2015. Do fats reduce methane emission by ruminants? A review. Anim. Sci. Pap. Rep. 33, 305–321.
53. Toral P.G., Belenguer A., Frutos P., Hervás G., 2009. Effect of the supplementation of a high-concentrate diet with sunflower and fish oils on ruminal fermentation in sheep. Small Rumin. Res. 81, 119–125, https://doi.org/10.1016/j.smallrumres.2008.12.009.
54. Ueda K., Ferlay A., Chabrot J., Loor J.J., Chilliard Y., Doreau M., 2003. Effect of linseed oil supplementation on ruminal digestion in dairy cows fed diets with different forage: concentrate ratios. J. Dairy Sci. 86, 3999–4007, https://doi.org/10.3168/jds.S0022-0302(03)74011-9.
55. Váradyová Z., Baran M., Zeleňák I., 2005. Comparison of two in vitro fermentation gas production methods using both rumen fluid and faecal inoculum from sheep. Anim. Feed Sci. Technol. 123–124, 81–94, https://doi.org/10.1016/j.anifeedsci.2005.04.030.
56. Wachira A.M., Sinclair L.A., Wilkinson R.K., Hallett K., Enser M., Wood J.D., 2000. Rumen biohydrogenation of n-3 polyunsaturated fatty acids and their effects on microbial efficiency and nutrient digestibilityin sheep. J. Agric. Sci. 135, 419–428, https://doi.org/10.1017/S0021859699008370.
57. Wallace R.J., 1996. Ruminal microbial metabolism of peptides and amino acids. J. Nutr. 126, 1326S–1334S.
58. Wencelová M., Váradyová Z., Mihaliková K., Guothová L., Janštová J., Čertík M., Homoľová L., Pristaš P., Jalč D., Kišidayová S., 2014. Substrates enriched by the fungus Cunninghamella echinulata: an in vitro study of nutrient composition, sheep rumen fermentation and lipid metabolism. J. Appl. Microbiol. 117, 930–939, https://doi.org/10.1111/jam.12594.
59. Williams A.G., Coleman G.S., 1992. The Rumen Protozoa. Springer-Verlag. New York, NY (USA), https://doi.org/10.1007/978-1-4612-2776-2.
60. Xie P.J., Huang L.X., Zhang C.H., Zhang Y.L., 2016. Nutrient assessment of olive leaf residues processed by solid-state fermentation as an innovative feedstuff additive. J. Appl. Microbiol. 121, 28–40, https://doi.org/10.1111/jam.13131.
61. Yang S., Zhang H., 2016. Enhanced polyunsaturated fatty acids production in Mortierella alpina by SSF and the enrichment in chicken breasts. Food Nutr. Res. 60, 30842, https://doi.org/10.3402/fnr.v60.30842.
62. Younker R.S., Winland S.D., Firkins J.L., Hull B.L., 1998. Effects of replacing forage fiber or nonfiber carbohydrates with brewers grains. J. Dairy Sci. 81, 2645–2656, https://doi.org/10.3168/jds.S0022-0302(98)75822-9.