Eighteen offspring pigs (150 days of age, sex balanced, similar body weights, 6 offspring per maternal diet group) from sows fed diets with different vitamin D3 levels (200, 800 and 3200 IU/kg basal diet) were weighed and slaughtered to examine the influence of maternal vitamin D3 levels on meat quality and fatty acids composition. The results suggested that maternal vitamin D3 supplementation decreased drip loss, shear force, total saturated fatty acids (SFA) content and n-6:n-3 ratio, while increased marbling score, subjective colour score, longissimus muscle area, total monounsaturated fatty acids (MUFA) content, polyunsaturated fatty acids (PUFA) content and the PUFA:SFA ratio. It was revealed that maternal vitamin D3 supplementation exerts positive effects on the meat quality of offspring pigs, and improves the healthful attributes of fatty acid profile. It can be concluded that an appropriate maternal vitamin D3 level (3200 IU of vitamin D3/kg basal diet) may improve the meat quality of offspring pigs.
This study was supported by grants from the Henan joint funds of the National Natural Science Foundation of China (U1604102), the National Natural Science Foundation of China (31572417) and the Provincial Key Technology Research and Development Program of Henan (192102110069).
The authors declare that there is no conflict of interest.
Du M., Tong J., Zhao J., Underwood K.R., Zhu M., Ford S.P., Nathanielsz P.W., 2010a. Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 88, Suppl. 13, E51–E60,
Du M., Yin J., Zhu M.J., 2010b. Cellular signaling pathways regulating the initial stage of adipogenesis and marbling of skeletal muscle. Meat Sci. 86, 103–109,
Duffy S.K., Kelly A.K., Rajauria G., Clarke L.C., Gath V., Monahan F.J., O’Doherty J.V., 2018. The effect of 25-hydroxyvitamin D3 and phytase inclusion on pig performance, bone parameters and pork quality in finisher pigs. J. Anim. Physiol. Anim. Nutr. 102, 1296–1305,
Dwyer C.M., Fletcher J.M., Stickland N.C., 1993. Muscle cellularity and postnatal growth in the pig. J. Anim. Sci. 71, 3339–3343,
Dwyer C.M., Stickland N.C., Fletcher J.M., 1994. The influence of maternal nutrition on muscle fiber number development in the porcine fetus and on subsequent postnatal growth. J. Anim. Sci. 72, 911–917,
Endo I., Inoue D., Mitsui T., Umaki Y., Akaike M., Yoshizawa T., Kato S., Matsumoto T., 2003. Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endocrinology 144, 5138–5144,
Fisher A.V., Enser M., Richardson R.I., Wood J.D., Nute G.R., Kurt E., Sinclair L.A., Wilkinson R.G., 2000. Fatty acid composition and eating quality of lamb types derived from four diverse breed × production systems. Meat Sci. 55, 141–147,
Flohr J.R., Woodworth J.C., Bergstrom J.R., Tokach M.D., Dritz S.S., Goodband R.D., DeRouchey J.M., 2016. Evaluating the impact of maternal vitamin D supplementation: I. Sow performance, serum vitamin metabolites, and neonatal muscle characteristics. J. Anim. Sci. 94, 4629–4642,
Guo L., Miao Z., Ma H., Melnychuk S., 2020a. Effects of maternal vitamin D3 concentration during pregnancy on adipogenic genes expression and serum biochemical index in offspring piglets. J. Anim. Feed. Sci. 29, 125–131,
Guo L.P., Miao Z.G., Ma H.J., Melnychuk S., 2020b. Effects of maternal vitamin D3 during pregnancy on FASN and LIPE mRNA expression in offspring pigs. J. Agric. Sci. 158, 128–135,
Guo L., Miao Z., Melnychuk S., Ma H., 2020c. Effects of maternal vitamin D3 on quality and water distribution in pork of offspring pigs during frozen storage. J. Anim. Feed. Sci. 29, 330–337,
Guo L.P., Miao Z.G., Ma H.J., Melnychuk S., 2021. Effects of maternal vitamin D3 status on quality traits of longissimus dorsi muscle in offspring pigs during postmortem storage. Livest. Sci. 243, 104372,
Hausman G.J., Dodson M.V., Ajuwon K. et al., 2009. The biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 87, 1218–1246,
Hines E.A., Coffey J.D., Starkey C.W., Chung T.K., Starkey J.D., 2013. Improvement of maternal vitamin D status with 25-hydroxycholecalciferol positively impacts porcine fetal skeletal muscle development and myoblast activity. J. Anim. Sci. 91, 4116–4122,
Hu F.B., Manson J.E., Willett W.C., 2001. Types of dietary fat and risk of coronary heart disease: a critical review. J. Am. Coll. Nutr. 20, 5–19,
Jin C.L., Gao C.Q., Wang Q., Zhang Z.M., Xu Y.L., Li H.C., Yan H.C., Wang X.Q., 2018. Effects of pioglitazone hydrochloride and vitamin E on meat quality, antioxidant status and fatty acid profiles in finishing pigs. Meat Sci. 145, 340–346,
Katan M.B., 2000. Nutritional interventions: the evidence. Proc. Nutr. Soc. 59, 417–418,
Laville E., Sayd T., Terlouw C., Chambon C., Damon M., Larzul C., Leroy P., Glénisson J., Chérel P., 2007. Comparison of sarcoplasmic proteomes between two groups of pig muscles selected for shear force of cooked meat. J. Agric. Food. Chem. 55, 5834–5841,
Liu H.W., Zhou D.W., 2013. Influence of pasture intake on meat quality, lipid oxidation, and fatty acid composition of geese. J. Anim. Sci. 91, 764–771,
Miao Z.G., Wang L.J., Xu Z.R., Huang J.F., Wang Y.R., 2009. Developmental changes of carcass composition, meat quality and organs in the Jinhua pig and Landrace. Animal 3, 468–473,
NPPC (National Pork Produces Council), 2000. Pork composition and quality assessment procedures, 1st Edition. Des Moines, IA, USA.
NRC (National Research Council), 2012. Nutrient Requirements of Swine. 11th Revised Edition. The National Academies Press. Washington, DC (USA),
O’Fallon J.V., Busboom J.R., Nelson M.L., Gaskins C.T., 2007. A direct method for fatty acid methyl ester synthesis: application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 85, 1511–1521,
Simopoulos A.P., 2008. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 233, 674–688,
Symonds M.E., Stephenson T., Gardner D.S., Budge H., 2007. Longterm effects of nutritional programming of the embryo and fetus: mechanisms and critical windows. Reprod. Fertil. Dev. 19, 53–63,
Tong J., Zhu M.J., Underwood K.R., Hess B.W., Ford S.P., Du M., 2008. AMP-activated protein kinase and adipogenesis in sheep fetal skeletal muscle and 3T3-L1 cells. J. Anim. Sci. 86, 1296–1305,
Waheed S., Hasnain A., Ahmad A., Tarar O.M., Yaqeen Z., Ali T.M., 2018. Effect of botanical extracts on amino acid and fatty acid profile of broiler meat. Rev. Bras. Cienc. Avic. 20, 507–516,
Wang B., Yang Q., Harris C.L., Nelson M.L., Busboom J.R., Zhu M.J., Du M., 2016. Nutrigenomic regulation of adipose tissue development – role of retinoic acid: A review. Meat Sci. 120, 100–106,
Wen J., Hong Q., Wang X. et al., 2018. The effect of maternal vitamin D deficiency during pregnancy on body fat and adipogenesis in rat offspring. Sci. Rep. 8, 365,
Wiegand B.R., Sparks J.C., Beitz D.C., Parrish Jr F.C., Horst R.L., Trenkle A.H., Ewan R.C., 2002. Short-term feeding of vitamin D3 improves color but does not change tenderness of pork-loin chops. J. Anim. Sci. 80, 2116–2121,
Wilborn B.S., Kerth C.R., Owsley W.F., Jones W.R., Frobish L.T., 2004. Improving pork quality by feeding supra nutritional concentrations of vitamin D3. J. Anim. Sci. 82, 218–224,
Wu G., Bazer F.W., Cudd T.A., Meininger C.J., Spencer T.E., 2004. Maternal nutrition and fetal development. J. Nutr. 134, 2169– 2172,
Zhu M.J., Ford S.P., Means W.J., Hess B.W., Nathanielsz P.W., Du M., 2006. Maternal nutrient restriction affects properties of skeletal muscle in offspring. J. Physiol. 575, 241–250,