CC-BY 4.0

In vitro gas production and degradation kinetics of elephant grass silage with dried tamarind residue

D. R. Menezes 1,  
A. L. Barbosa 1,  
R. T. S. Rodrigues 2  ,  
F. N. Lista 3,  
S. A. Moraes 5,  
Federal University of São Francisco Valley, Department of Veterinary, Petrolina PE, 56306-410 Brazil
Federal University of Lavras,Department of Animal Science, Lavras MG, 37200-000 Brazil
Federal University of São Francisco Valley, Department of Animal Science, Petrolina PE, 56306-410 Brazil
Federal University of Bahia,Department of Animal Science, Salvador BA, 40170-110 Brazil
Semiarid Embrapa, Petrolina PE, 56302-970 Brazil
J. Anim. Feed Sci. 2016;25(3):259–265
Publication date: 2016-08-25
This study was conducted to evaluate fermentation, degradation kinetics and gas production of elephant grass silages enriched with dried tamarind (Tamarindus indica) residue (DTR). The experimental design was 4 × 7 factorial, with 4 inclusion levels of DTR (0, 8, 16 or 24% on an as-fed basis), and 7 silo opening times (days 1, 3, 6, 12, 24, 48 and 60), and 3 replicates. The kinetics of degradation and gas production were evaluated in the samples of silages opened at day 60 by the semi-automatic in vitro gas production technique. Silages with the inclusion of DTR showed lower pH values (P < 0.05) until the day 6. The N-NH3 concentration did not differ (P > 0.05) between DTR levels and silo opening times. The inclusion of DTR in the ensiling of elephant grass increased silage dry matter (DM) content and caused a linear decrease (P < 0.05) in all parameters evaluated for gas production. At each 8% increase in DTR inclusion, the maximum total volume of gas production, gas production rate from total carbohydrates and time of colonization decreased by 6.1 ml · g–1 of DM, 0.006 ml · g–1 of DM · h–1, and 2.4 h, respectively. However, the effective degradability increased linearly (2.2%) at each 8% increase in DTR inclusion (P < 0.05). In conclusion, it was observed that the 24% inclusion of DTR to elephant grass silage provided a more rapid reduction in pH, reduced the in vitro gas production and increased DM degradability.
R. T. S. Rodrigues   
Federal University of Lavras,Department of Animal Science, Lavras MG, 37200-000 Brazil
1. AOAC International, 2000. Official Methods of Analysis of AOAC International. 17th Edition. Gaithersburg, MD (USA)
2. Baraza E., Ángeles S., García A., Valiente-Banuet A., 2009. Adoption of silage as a methodology to improve domestic goat productivity for marginal farmers of the Tehuacán Valley in México. Livest. Res. Rural Dev. 21, www.lrrd.org/lrrd21/9/ajay2114...
3. Bhatta R., Krishnamoorthy U., Mohammed F., 2000. Effect of feeding tamarind (Tamarindus indica) seed husk as a source of tannin on dry matter intake, digestibility of nutrients and production performance of crossbred dairy cows in mid-lactation. Anim. Feed Sci. Tech. 83, 67–74
4. Bhatta R., Krishnamoorthy U., Mohammed F., 2001. Effect of tamarind (Tamarindus indica) seed husk tannins on in vitro rumen fermentation. Anim. Feed Sci. Tech. 90, 143–152
5. Charmley E., 2001. Towards improved silage quality – A review. Can. J. Anim. Sci. 81, 157–168
6. Ferreira A.C.H., Rodriguez N.M., Neiva J.N.M., Pimentel P.G., Gomes S.P., Campos W.E., Lopes F.C.F., 2015. Nutritional evaluation of elephant-grass silages with different levels of by-products from the cashew juice industry. Rev. Bras. Zootecn. 44, 434–442
7. Guerra D.G.F., Maia I.S.A.S., Braga A.P., Assis L.C.S.L.C., Lucena J.A., Bidler D.C., Santos Neto C.F., Medeiros e Silva Y.F., Pereira M.I.B., Pinto M.M.F., 2016. Chemical composition of elephant grass silages supplemented with different levels of dehydrated cashew bagasse. Semin. Ciênc. Agrár. 37, 997–1006
8. Hernández J., Rojo R., Salem A.Z.M., Mirzaei F., Gonzalez A., Vázquez J.F., Montañez O.D., Lucero F.A., 2012. Influence of different levels of dried citrus pulp on in vitro ruminal fermentation kinetics of total mixed ration in goat rumen inocula. J. Anim. Feed Sci. 21, 458–467
9. Maurício R.M., Pereira L.G.R., Gonçalves L.C., Rodriguez N.M., 2003. Relationship between volume and pressure for installation of the semi-automated in vitro gas production technique for tropical forage evaluation (in Portuguese). Arq. Bras. Med. Vet. Zoo. 55, 216–219
10. McDonald P., Henderson A.R., Heron S.J.E. (Editors), 1991. Biochemistry of Silage. 2nd Edition. Chalcombe Publications. Marlow (UK)
11. Menezes D.R., Costa R.G., Araújo G.G.L., Pereira L.G.R., Nunes A. C.B., Henrique L.T., Rodrigues R.T.S., 2015. Ruminal kinetics of diets containing detoxicated castor bean meal (in Portuguese). Arq. Bras. Med. Vet. Zoo. 67, 636–641
12. Muck R.E., 1988. Factors influencing silage quality and their implications for management. J. Dairy Sci. 71, 2992–3002
13. Ørskov E.R., McDonald I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agr. Sci. 92, 499–503
14. Patra A.K., Saxena J., 2010. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 71, 1198–1222
15. Pereira L.G.R., Azevedo J.A.G., Pina D.S., Brandão L.G.N., Araujo G.G.L., Voltolini T.V. (Editors), 2009. Aproveitamento dos Coprodutos da Agroindústria Processadora de Suco e Polpa de Frutas Para Alimentação de Ruminantes (in Portuguese). Embrapa Semi-Árido. Petrolina (Brazil)
16. Piquer O., Casado C., Biglia S., Fernández C., Blas E., Pascual J.J., 2009. In vitro gas production kinetics of whole citrus fruits. J. Anim. Feed Sci. 18, 743–757
17. Rêgo M.M.T., Neiva J.N.M., Rêgo A.C., Cândido M.J.D., Carneiro M.S.S., Lôbo R.N.B., 2010. Chemical and bromatological characteristics of elephant grass silages containing a mango by-product. Rev. Bras. Zootecn. 39, 81–87
18. Romero-Huelva M., Martín-García A.I., Nogales R., Molina-Alcaide E., 2013. The effects of feed blocks containing tomato and cucumber by-products on in vitro ruminal fermentation, microbiota, and methane production. J. Anim. Feed Sci. 22, 229–237
19. Schofield P., Pitt R.E., Pell A.N., 1994. Kinetics of fibre digestion from in vitro gas production. J. Anim. Sci. 72, 2980–2991
20. Sinchaiyakit P., Ezure Y., Sriprang S., Pongbangpho S., Povichit N., Suttajit M., 2011. Tannins of tamarind seed husk: preparation, structural characterization, and antioxidant activities. Nat. Prod. Commun. 6, 829–834
21. Sousa D.M.M., Bruno R.L.A., Dornelas C.S.M., Alves E.U., Andrade A.P., Nascimento L.C., 2010. Tamarind fruit and seed morphological characterization and post-seminal development Leguminosae: caesalpinioideae (in Portuguese). Rev. Árvore 34, 1009–1015
22. Theodorou M.K., Willians B.A., Dhanoa M.S., McAllan A.B., France J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Tech. 48, 185–197
23. Tomich T.R., Gonçalves L.C., Maurício R.M., Pereira L.G.R., Rodrigues J.A.S., 2003. Bromatological composition and rumen fermentation kinetics of hybrids from crosses of sorghum and sudangrass (in Portuguese). Arq. Bras. Med. Vet. Zoo. 55, 747–755
24. Van Soest P.J. (Editor), 1994. Nutritional Ecology of the Ruminant. Cornell University Press. Ithaca, NY (USA)
25. Woolford M.K. (Editor), 1984. The Silage Fermentation. Microbiology Series, Vol. 14. Marcel Dekker, New York, NY (USA)
1. Valorization of byproducts from tropical fruits: Extraction methodologies, applications, environmental, and economic assessment: A review (Part 1: General overview of the byproducts, traditional biorefinery practices, and possible applications)
José Villacís‐Chiriboga, Kathy Elst, Camp Van, Edwin Vera, Jenny Ruales
Comprehensive Reviews in Food Science and Food Safety
2. In vitro gas production and digestibility of oil palm frond silage mixed with different levels of elephant grass
W Astuti, Y Widyastuti, R Fidriyanto, R Ridwan, Rohmatussolihat, N Sari, Firsoni, I Sugoro
IOP Conference Series: Earth and Environmental Science