ORIGINAL PAPER
Figure from article: Effects of soybean lecithin...
 
KEYWORDS
TOPICS
ABSTRACT
Soybean lecithin (SL) is commonly used as a nutritional supplement in animal diets. This study investigated the effects of SL on feed intake, ruminal fermentation, rumen microbial populations, digestive enzyme activities, and apparent nutrient digestibility in sheep. The feeding trial involved four Chinese Merino rams fitted with permanent rumen fistulae in a 4 × 4 Latin square design, fed a basal diet supplemented with 0, 10, 20, and 40 g/day of SL for 22 days. SL addition significantly increased the intake of ether extract (EE), phosphorus, and the apparent digestibility of EE and acid detergent fibre (ADF) (P < 0.05). It also influenced the total counts of bacteria and fungi (P < 0.05), while protozoal populations remained unaffected (P > 0.05). The concentrations of total volatile fatty acids and ammonia nitrogen decreased significantly (P < 0.05), whereas the activities of carboxymethyl cellulase and filter paper cellulase increased (P <0.05) with rising levels of SL supplementation in sheep rumen fluid. These findings suggest that dietary SL can improve rumen fermentation parameters, stimulate digestive enzyme activity, and increase the apparent digestibility of EE and ADF. The results of this study indicate that 20 g/day is the optimal SL supplementation level in sheep diets.
ACKNOWLEDGEMENTS
This work was supported by the Program for Science and Technology Innovation Talents (2022TSYCLJ0014) and the Special Project of the Central Government Guidance on Local Science and Technology Development (ZYYD2023B09).
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (31)
1.
Abel-Caines S.F., Grant R.J., Morrison M., 1998. Effect of soybean hulls, soy lecithin, and soap stock mixtures on ruminal fermentation and milk composition in dairy cows. J. Dairy Sci. 81, 462–470, https://doi.org/10.3168/jds.S0....
 
2.
AOAC International, 1999. Official Methods of Analysis. 16th Edition. Association of Official Analytical Chemists. Washington, DC (USA).
 
3.
Chen G.J., Zhang R., Wu J.H., Shang Y.S., Li X.D., Qiong M., Wang P.C., Li S.G., Gao Y.H., Xiong X.Q., 2020. Effects of soybean lecithin supplementation on growth performance, serum metabolites, ruminal fermentation and microbial flora of beef steers. Livest. Sci. 240, 104121, https://doi.org/10.1016/j.livs....
 
4.
Chen Y., Zhang H., Wang H., Yang K., 2011. Effects of dietary addition of non-ionic surfactants on ruminal metabolism and nutrient digestion of Chinese Merino sheep. Asian J. Anim. Vet. Adv. 6, 688–696, https://doi.org/10.3923/ajava.....
 
5.
Daněk P., Paseka A., Smola J., Ondracek J., Beckova R., Rozkot M., 2005. Influence of lecithin emulsifier on the utilisation of nutrients and growth of piglets after weaning. Czech J. Anim. Sci. 50, 459–465, https://doi.org/10.17221/4245-....
 
6.
Denman S.E., McSweeney C.S., 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58, 572–582, https://doi.org/10.1111/j.1574....
 
7.
Fontoura A.B.P., Rico J.E., Davis A.N., Myers W.A., Tate B.N., Gervais R., McFadden J.W., 2021. Effects of dietary deoiled soy lecithin supplementation on milk production and fatty acid digestibility in Holstein dairy cows. J. Dairy Sci. 104, 1823–1837, https://doi.org/10.3168/jds.20....
 
8.
Helle S.S., Duff S.J., Cooper D.G., 1993. Effect of surfactants on cellulose hydrolysis. Biotechnol. Bioeng. 42, 611–617, https://doi.org/10.1002/bit.26....
 
9.
Hill T.M., Bateman II H.G., Aldrich J.M., Schlotterbeck R.L., 2009. Effects of changing the essential and functional fatty acid intake of dairy calves. J. Dairy Sci. 92, 670–676, https://doi.org/10.3168/jds.20....
 
10.
Hristov A.N., Ivan M., Neill L., McAllister T.A., 2003. Evaluation of several potential bioactive agents for reducing protozoal activity in vitro. Anim. Feed Sci. Tech. 105, 163–184, https://doi.org/10.1016/S0377-....
 
11.
Hua D., Hendriks W.H., Xong B., Pellikaan W.F., 2022. Starch and cellulose degradation in the rumen and applications of metagenomics on ruminal microorganisms. Animals 12, 3020, https://doi.org/10.3390/ani122....
 
12.
Kamande G.M., Baah J., Cheng K.J., McAllister T.A., Shelford J.A., 2000. Effects of Tween 60 and Tween 80 on protease activity, thiol group reactivity, protein adsorption, and cellulose degradation by rumen microbial enzymes. J. Dairy Sci. 83, 536–542, https://doi.org/10.3168/jds.S0....
 
13.
Kim C.H., Kim J.N., Ha J.K., Yun S.G., Lee S.S., 2004. Effects of dietary addition of surfactant Tween 80 on ruminal fermentation and nutrient digestibility of Hanwoo steers. Asian-Australas. J. Anim. Sci. 17, 337–342, https://doi.org/10.5713/ajas.2....
 
14.
Lee S.S., Ahn B.H., Kim H.S., Kim C.H., Cheng K.J., Ha J.K., 2003. Effects of non-ionic surfactants on enzyme distributions of rumen contents, anaerobic growth of rumen microbes, rumen fermentation characteristics and performances of lactating cows. Asian-Australas. J. Anim. Sci. 16, 104–115, https://doi.org/10.5713/ajas.2....
 
15.
Liu X., Yoon S.B., Kim I.H., 2020. Growth performance, nutrient digestibility, blood profiles, excreta microbial counts, meat quality and organ weight on broilers fed with de-oiled lecithin emulsifier. Animals 10, 478, https://doi.org/10.3390/ani100....
 
16.
Minas K., McEwan N.R., Newbold C.J., Scott K.P., 2011. Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbiol. Lett. 325, 162–169, https://doi.org/10.1111/j.1574....
 
17.
Pérez J., Munoz-Dorado J., De la Rubia T.D.L.R., Martinez J., 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. 5, 53–63, https://doi.org/10.1007/s10123....
 
18.
Polycarpo G.D.V., Burbarelli M.F.D.C., Carao A.C.P., Merseguel C.E.B., Dadalt J.C., Maganha S.R.D.L., Albuquerque R.D., 2016. Effects of lipid sources, lysophospholipids and organic acids in maize-based broiler diets on nutrient balance, liver concentration of fat-soluble vitamins, jejunal microbiota and performance. Brit. Poultry Sci. 57, 788–798, https://doi.org/10.1080/000716....
 
19.
Shen Y., Zhang S., Zhao X., Shi S., 2021. Evaluation of a lecithin supplementation on growth performance, meat quality, lipid metabolism, and cecum microbiota of broilers. Animals 11, 2537, https://doi.org/10.3390/ani110....
 
20.
Shi B., Wang C., Teng T., Liu T., Zhang X., Shan A., 2019. Effects of dietary soybean lecithin oil on the immunoglobulin level and fat globule size of milk in lactating sows. Food Agr. Immunol. 30, 774–785, https://doi.org/10.1080/095401....
 
21.
Singh K.M., Pandya P.R., Tripathi A.K., Patel G.R., Parnerkar S., Kothari R.K., Joshi C.G., 2014. Study of rumen metagenome community using qPCR under different diets. Meta Gene 2, 191–199, https://doi.org/10.1016/j.mgen....
 
22.
Taguchi H., Koike S., Kobayashi Y., Cann I.K., Karita S., 2004. Partial characterization of structure and function of a xylanase gene from the rumen hemicellulolytic bacterium Eubacterium ruminantium. Anim. Sci. J. 75, 325–332, https://doi.org/10.1111/j.1740....
 
23.
Tan P., Zhu W., Zhang P., Wang L., Chen R., Xu D., 2022. Dietary soybean lecithin inclusion promotes growth, development, and intestinal morphology of yellow drum (Nibea albiflora) larvae. Aquaculture 559, 738446, https://doi.org/10.1016/j.aqua....
 
24.
Van Soest P.V., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597, https://doi.org/10.3168/jds.S0....
 
25.
Viñado A., Castillejos L., Barroeta A.C., 2020. Soybean lecithin as an alternative energy source for grower and finisher broiler chickens: impact on performance, fatty acid digestibility, gut health, and abdominal fat saturation degree. Poultry Sci. 99, 5653–5662, https://doi.org/10.1016/j.psj.....
 
26.
Viñado A., Castillejos L., Rodriguez-Sanchez R., Barroeta A.C., 2019. Crude soybean lecithin as alternative energy source for broiler chicken diets. Poultry Sci. 98, 5601–5612, https://doi.org/10.3382/ps/pez....
 
27.
Wang W., Wang C., Zahoor Chen X., Yu Q., Wang Z., Yuan Z., 2020. Effect of a nonionic surfactant on enzymatic hydrolysis of lignocellulose based on lignocellulosic features and enzyme adsorption. ACS Omega, 5, 15812–15820, https://doi.org/10.1021/acsome....
 
28.
Wei H., Liu J., Liu M., Zhang H., Chen Y., 2024. Rumen fermentation and microbial diversity of sheep fed a high-concentrate diet supplemented with hydroethanolic extract of walnut green husks. Anim. Biosci. 37, 655, https://doi.org/10.5713/ab.23.....
 
29.
Yang W., Wu J., Song R., Li Z., Jia X., Qian P., Wu C., 2023. Effects of dietary soybean lecithin on growth performances, body composition, serum biochemical parameters, digestive and metabolic abilities in largemouth bass Micropterus salmoides. Aquacult. Rep. 29, 101528, https://doi.org/10.1016/j.aqre....
 
30.
Yu C., Luo Q., Chen Y., Liu S., Zang C., 2020. Impact of docusate and fauna-free on feed intake, ruminal flora and digestive enzyme activities of sheep. J. Anim. Physiol. An. N. 104, 1043–1051, https://doi.org/10.1111/jpn.13....
 
31.
Zhu W., Tan P., Lou B., Chen R., Wang L., Xu D., 2020. Supplementation of a soybean oil-based diet with tributyrin influences growth, muscle composition, intestinal morphology, and expression of immune-related genes of juvenile yellow drum (Nibea albiflora Richardson, 1846). Aquacult. Int. 28, 2027–2043, https://doi.org/10.1007/s10499....
 
ISSN:1230-1388
Journals System - logo
Scroll to top