ORIGINAL PAPER
Figure from article: Effects of lactic acid...
 
KEYWORDS
TOPICS
ABSTRACT
This study investigated the effects of direct-fed microbials (DFM) containing Schleiferilactobacillus harbinensis (lactic acid bacteria, LAB) and Pichia kudriavzevii (yeast), applied in different combinations and doses, on rumen fermentation, nutrient digestibility, and microbial populations using an in vitro system. A 3 × 4 factorial design was used, with three LAB:yeast ratios (A1: 1:1, A2: 1:3, A3: 3:1) and four DFM inclusion levels (1%, 2%, 3%, and 4% v/v) with three replicates per treatment. The fermentation substrate consisted of 60% Pennisetum purpureum and 40% concentrate, incubated with goat rumen fluid for 48 h. Data were analysed using generalised linear mixed models, with DFM ratio and dose as fixed effects and their interaction as a random effect. DFM combinations did not alter ruminal pH or overall fermentation; however, the 1:1 ratio (A1) significantly increased butyrate, iso-butyrate, and iso-valerate concentrations (P < 0.05). Increasing DFM dose (up to 4%) elevated NH3 concentration, total short-chain fatty acids, propionate and butyrate proportions, and reduced the acetate-to-propionate ratio (P < 0.05). Nutrient digestibility improved with higher DFM doses, with the 4% level resulting in the highest in vitro dry matter digestibility, in vitro organic matter digestibility, and in vitro crude fibre digestibility values (P < 0.05). Microbial analysis showed that the 1:1 ratio increased Prevotella ruminicola and Butyrivibrio fibrisolvens, whereas higher doses generally stimulated beneficial microbes and reduced methanogen populations (P < 0.05). In conclusion, a 1:1 combination of S. harbinensis and P. kudriavzevii at a 4% inclusion level improved fermentation profiles, nutrient digestibility, and microbial populations in vitro. These findings highlight the importance of both microbial ratio and dose in optimising DFM formulations to support rumen function.
ACKNOWLEDGEMENTS
The authors acknowledge the technical support and facilities provided by the Feed Industry Technology Laboratory, Ruminant Nutrition Laboratory, Animal Biotechnology Laboratory of the Faculty of Animal Science, Universitas Andalas. Additional support was received from the Research Center for Applied Zoology and E-Layanan Sains (ELSA) Genomic and Environmental Laboratory, National Research and Innovation Agency (BRIN), Cibinong-Indonesia. Also, Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Australia.
FUNDING
This study was supported by the PMDSU Grant from the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia, awarded in 2023 (Grant No. T/27/UN.16.19/ PT.01.03/PPS-PMDSU-Pangan/2023, dated April 14, 2023).
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (50)
1.
Adawiah A., Meryandini A., Ridwan R., Fidriyanto R., Sarwono K.A., Wiryawan K.G., 2025. The rumen microbiome and metabolome profile of Ongole crossbreed cattle fed probiotics and protected amino acids. Trop. Anim. Health Prod. 57, 148, https://10.1007/s11250-025-044....
 
2.
Amin A.B., Mao S., 2021. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: A review. Anim. Nutr. 7, 31–415, https://doi.org/10.1016/j.anin....
 
3.
Ardani L.R., Marlida Y., Zain M., Jamsari J., Fassah D.M., 2023. Lactic acid bacteria and yeast strains isolated from fermented fish (Budu) identified as candidate ruminant probiotics based on in vitro rumen fermentation characteristics. Vet. World 16, 395–402, https://doi.org/10.14202/vetwo....
 
4.
Beauchemin K.A., Yang W.Z., Morgavi D.P., Ghorbani G.R., Kautz W., Leedle J.A.Z., 2003. Effects of bacterial directfed microbials and yeast on site and extent of digestion, blood chemistry, and subclinical ruminal acidosis in feedlot cattle. J. Anim. Sci. 81, 16281640, https://doi.org/10.2527/2003.8....
 
5.
Chaucheyras-Durand F., Fonty G., 2001. Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae CNCM I-1077. Reprod. Nutr. Dev. 41, 57–68, https://doi.org/10.1051/rnd:20....
 
6.
Chaucheyras-Durand F., Walker N.D., Bach A., 2008. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed. Sci. Tech. 145, 5–26, https://doi.org/10.1016/j.anif....
 
7.
Chen Q., Sha Y., Liu X. et al., 2025. A study on the differences in rumen microbiota-liver gluconeogenesis-mitochondrial interaction between Tibetan Sheep and Hu Sheep in the Qinghai-Tibet Plateau. Animals 15, 1603, https://doi.org/10.3390/ani151....
 
8.
Conway E.J., O’Malley E., 1942. Microdiffusion methods. Ammonia and urea using buffered absorbents (revised methods for ranges greater than 10 μg. N). Biochem. J. 36, 655–661, https://doi.org/10.1042/bj0360....
 
9.
Denman S.E., McSweeney C.S., 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58, 572–82, https://doi.org/10.1111/j.1574....
 
10.
Dhakal R., Copani G., Cappellozza B.I., Milora N., Hansen H.H., 2023. The effect of direct-fed microbials on in-vitro rumen fermentation of grass or maize silage. Fermentation 9, 347, https://doi.org/10.3390/fermen....
 
11.
Ghazanfar S., Khalid N., Ahmed I., Imran M., 2017. Probiotic yeast: mode of action and its effects on ruminant nutrition. In: A. Morata, I. Loira (Editors). Yeast - Industrial Applications. Intech Open. London (UK), pp. 179–202, https://doi.org/10.5772/intech....
 
12.
Goldsmith K., Lefler J., Embree M., VandeHaar M.J., 2022. The effect of supplementing native rumen microbes on milk production of dairy cows. JDS Commun. 4, 31–34, https://doi.org/10.3168/jdsc.2....
 
13.
Guimaraes O., Preedy G., Fox J.T., Cappellozza B.I., Davis T.C., Schutz J.S., Theurer M.E., 2024. A novel directfed microbial impacts growth performance and supports overall health of feedlot cattle. Ruminants 4, 267–279, https://doi.org/10.3390/rumina....
 
14.
Jeyanathan J., Martin C., Eugène M., Ferlay A., Popova M., Morgavi D.P., 2019. Direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. J. Animal Sci. Biotechnol. 10, 41, https://doi.org/10.1186/s40104....
 
15.
Jeyanathan J., Martin C., Morgavi D.P., 2014. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal 8, 250–261, https://doi.org/10.1017/S17517....
 
16.
Ji Y., Dong X., Liu Z., Wang W., Yan H., Liu X., 2022. Effects of bovine Pichia kudriavzevii T7, Candida glabrata B14, and Lactobacillus plantarum Y9 on milk production, quality and digestive tract microbiome in dairy cows. Microorganism 10, 842, https://doi.org/10.3390/microo....
 
17.
Jiang Y., Ogunade I.M., Qi S., Hackmann T.J., Staples C.R., Adesogan A.T., 2017. Effects of the dose and viability of Saccharomyces cerevisiae. 1. Diversity of ruminal microbes as analyzed by Illumina MiSeq sequencing and quantitative PCR. J. Dairy Sci. 100, 325–342, https://doi.org/10.3168/jds.20....
 
18.
Jiao P.X., Liu F.Z., Beauchemin K.A., Yang W.Z., 2017. Impact of strain and dose of lactic acid bacteria on in vitro ruminal fermentation with varying media pH levels and feed substrates. Anim. Feed Sci. Tech. 224, 1–13, https://doi.org/10.1016/j.anif....
 
19.
Jung J.Y., Han S.S., Kim Z.H., Kim M.H., Kang H.K., Jin H.M., Lee M.H., 2021. In-vitro characterization of growth inhibition against the gut pathogen of potentially probiotic lactic acid bacteria strains isolated from fermented products. Microorganisms 9, 2141, https://doi.org/10.3390/microo....
 
20.
Kraimi N., Dawkins M., Gebhardt-Henrich S.G., Velge P., Rychlik I., Volf J., 2019. Influence of the microbiota-gut-brain axis on behaviour and welfare in farm animals: a review. Physiol. Behav. 210, 112658, https://doi.org/10.1016/j.phys....
 
21.
Kulkarni, Nitish, Chethan H., Srivastava, Rashika, Gabbur, Anil, 2022. Role of probiotics in ruminant nutrition as natural modulators of health and productivity of animals in tropical countries: an overview. Trop. Anim. Health Pro. 54, https://doi.org/10.1007/s11250....
 
22.
Kumprechtovaa D., Illek J., Julien C., Homolka P., Janccik F., Auclair E., 2019. Effect of live yeast (Saccharomyces cerevisiae) supplementation on rumen fermentation and metabolic profile of dairy cows in early lactation. J. Anim. Physiol. An. N. 103, 447–55, https://doi.org/10.1111/jpn.13....
 
23.
Livak K.J., Schmittgen T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25, 402–408, https://doi.org/10.1006/meth.2....
 
24.
Maderal A., Fernandez-Marenchino I., Cuervo W. et al., 2022. PSI-19 Effect of increasing supplementation of Bacillus spp. on in vitro ruminal fermentation and nutrient digestibility. J. Anim. Sci. 100, 359, https://doi.org/10.1093/jas/sk....
 
25.
Madkour M.A., Khattab H.M., El-Bordeny H.M., Mattar B.E., 2018. Evaluation of direct-fed microbial supplementation to improve utilization of the low quality roughages in ruminants. Arab Univ. J. Agric. Sci. 26, 1869–1878, https://doi.org/10.21608/ajs.2....
 
26.
Marlida Y., Nurmiati N., Husmaini H., Huda N., Anggraini L., Ardani L.R., 2023. The potential of lactic acid bacteria isolated from ikan budu (fermented fish) to inhibit the growth of pathogenic fungi and detoxify aflatoxin B1. Vet. World 16, 1373–1379, https://doi.org/10.14202/vetwo....
 
27.
Mashraqi A., Eshetea B.B., Eribo B., 2023. Draft genome sequences of probiotic candidate Schleiferilactobacillus harbinensis isolated from fermented milk “Laban”. Microbiol Resour. Announc. 12, e0104322, https://doi.org/10.1128/mra.01....
 
28.
McAllister T.A., Beauchemin K.A., Alazzeh A.Y., Baah J., Teather R.M., Stanford K., 2001. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci. 91, 193211, https://doi.org/10.4141/cjas10....
 
29.
McCoun M., Oyebade A., Estrada-Reyes Z.M., Pech-Cervantes A.A., Ogunade I.M., 2021. Effects of multi-species direct-fed microbial products on ruminal metatranscriptome and carboxyl-metabolome of beef steers. Animals (Basel) 11, 72, https://doi.org/10.3390/ani110....
 
30.
McDougall E.I., 1948. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 43, 99–109, https://doi.org/10.1042/bj0430....
 
31.
Miyamoto M., Seto Y., Hai H.D., Teshima T., Bo S.Y., Kabuki T., Bing Y.L., Nakajima H., 2005. Lactobacillus harbinensis sp. nov., consisted of strains isolated from traditional fermented vegetables “Suan cai” in Harbin, Northeastern China and Lactobacillus perolens DSM 12745. Syst. Appl. Microbiol. 28, 688–694, https://doi.org/10.1016/j.syap....
 
32.
Monteiro H.F., Lelis A.L.J., Fan P, Calvo A.B., Lobo R.R., Arce-Cordero J.A., Dai X., Jeong K.C., Faciola A.P., 2022. Effects of lactic acid-producing bacteria as direct-fed microbials on the ruminal microbiome. J. Dairy Sci. 105, 2242–2255, https://doi.org/10.3168/jds.20....
 
33.
Mrazek J., Kopecny J., 2001. Development of competitive PCR for detection of Butyrivibrio fibrisolvens in the rumen. Folia Microbiol. (Praha) 46, 63–65, https://doi.org/10.1007/BF0282....
 
34.
Oyebade A.O., Arriola K., Queiroz O., Cappellozza B.I., Vyas D., 2024. Effects of direct-fed microbials supplementation on in vitro and ex vivo ruminal fermentation and nutrient degradability in lactating Holstein dairy cows. Transl. Anim. Sci. 8, txae162, https://doi.org/10.1093/tas/tx....
 
35.
Palevich N., Kelly W.J., Leahy S.C., Denman S., Altermann E., Rakonjac J., Attwood G.T., 2019. comparative genomics of rumen Butyrivibrio spp. uncovers a continuum of polysaccharide-degrading capabilities. Appl. Environ. Microbiol 86, e01993-19, https://doi.org/10.1128AEM.019....
 
36.
Palmonari A., Federiconi A., Formigoni A., 2024. Animal board invited review: The effect of diet on rumen microbial composition in dairy cows. Animal 18, 101319, https://doi.org/10.1016/j.anim....
 
37.
Phesatcha K., Phesatcha B., Chunwijitra K., Wanapat M., Cherdthong A., 2021. Changed rumen fermentation, blood parameters, and microbial population in fattening steers receiving a high concentrate diet with Saccharomyces cerevisiae improve growth performance. Vet. Sci. 8, 294, https://doi.org/10.3390/vetsci....
 
38.
Philippeau C.A., Lettat C., Martin M., Silberberg D.P., Morgavi A., Ferlay C., Berger P.N., 2017. Effects of bacterial directfed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high- or low-starch diets. J. Dairy Sci. 100, 2637–2650, https://doi.org/10.3168/jds.20....
 
39.
Ridwan R., Bungsu W.A., Astuti W.D., Rohmatussolihat R., Sari N.F., Fidriyanto R., Jayanegara A., Wijayanti I., Widyastuti Y., 2018. The use of lactic acid bacteria as ruminant probiotic candidates based on in vitro rumen fermentation characteristics. Buletin Peternakan. 42, 31–36, https://doi.org/10.21059/bulet....
 
40.
Ridwan R., Rusmana I., Widyastuti Y., Wiryawan K.G., Prasetya B., Sakamoto M., Ohkuma M., 2019. Bacteria and methanogen community in the rumen fed different levels of grass-legume silages. Biodiversitas 20, 1055–1062, https://doi.org/10.13057/biodi....
 
41.
Sanam M.U.E., Detha A.I.R., Rohi N.K., 2022. Detection of antibacterial activity of lactic acid bacteria, isolated from Sumba mare’s milk, against Bacillus cereus, Staphylococcus aureus, and Escherichia coli. J. Adv. Vet. Anim. Res. 9, 53–58, https://doi.org/10.5455/javar.....
 
42.
Silva T.H., Ncio B.R., Magnani E., Reolon H.G., Timm T.G., Ama, Meurer G.W., Cappellozza B.I., Branco R.H., Paula E.M., 2024. Evaluation of direct-fed microbials on in vitro ruminal fermentation, gas production kinetic, and greenhouse gas emissions in different ruminants’ diet. Front. Anim. Sci. 5, 1320075, https://doi.org/10.3389/fanim.....
 
43.
Stevenson D.M., Weimer P.J., 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 75, 165–174, https://doi.org/10.1007/s00253....
 
44.
Suntara C., Cherdthong A., Wanapat M., Uriyapongson S., Leelavatcharamas V., Sawaengkaew J., Chanjula P., Foiklang S., 2021. Isolation and characterization of yeasts from rumen fluids for potential use as additives in ruminant feeding. Vet. Sci. 8, 52, https://doi.org/10.3390/vetsci....
 
45.
Susalam M.K., Harnentis, Marlida Y., Jamsari, Ardani L.R., 2024. The effect of probiotics consortium isolated from fermented fish (Budu) on broiler performances and meat quality. IJVS 13, 100–107, https://doi.org/10.47278/journ....
 
46.
Tajima K., Aminov R.I., Nagamine T., Matsui H., Nakamura M., Benno Y., 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67, 2766–2774, https://doi.org/10.1128/AEM.67....
 
47.
Tilley J.M.A., Terry R.A., 1963. A Two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18, 104–111, https://doi.org/10.1111/j.1365....
 
48.
Villena J., Aso H., Rutten V.P.M.G., Takahashi H., van Eden W., Kitazawa H., 2018. Immunobiotics for the bovine host: Their interaction with intestinal epithelial cells and their effect on antiviral immunity. Front. Immunol. 9, 36, https://doi.org/10.3389/fimmu.....
 
49.
Zhao W., Abdelsattar M.M., Wang X., Zhang N., Chai J., 2023. In vitro modulation of rumen fermentation by microbiota from the recombination of rumen fluid and solid phases. Microbiol. Spectr. 11, e03387-22, https://doi.org/10.1128/spectr....
 
50.
Zhou M., Hernandez-Sanabria E., Guan L.L., 2022. Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl. Environ. Microbiol. 75, 6524–6533, https://doi.org/10.1128/AEM.02....
 
ISSN:1230-1388
Journals System - logo
Scroll to top