ORIGINAL PAPER
QRFP43 modulates somatotrophic axis activity in female sheep
More details
Hide details
1
The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Department of Animal Physiology, Instytucka 3, 05-110 Jabłonna, Poland
These authors had equal contribution to this work
Publication date: 2025-06-23
Corresponding author
B. J. Przybył
The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Department of Animal Physiology, Instytucka 3, 05-110 Jabłonna, Poland
KEYWORDS
TOPICS
ABSTRACT
RFamide (RFa) peptides are a large family of neuropeptides present
in all groups of vertebrates. Members of this family have been shown to play
many physiological roles in neuroendocrine, behavioral, sensory and autonomic
functions. QRFP43 is one of the youngest members of this peptide family,
which have been suggested to affect somatotrophic axis activity, mainly through
changes in blood GH levels. The aim of the study was to investigate the role of
QRFP43 in regulation of the somatotrophic axis hormones activity. The research
hypothesis posited that QRFP43 could modulate gene expression, storage and
release of somatotrophic axis hormones at the level of the hypothalamus and
pituitary. The animals (n = 48) were randomly divided into three experimental
groups: a control group receiving an intracerebroventricular (ICV) infusion of
Ringer-Locke solution, and two experimental groups administered ICV infusions
of QRFP43 at doses of 10 and 50 μg per day. All sheep received four 50-min
ICV infusions with 30-min intervals between infusion, on three consecutive days.
Hypothalamic structures and pituitary were collected and preserved for further
analyses. The results of the present study have demonstrated that QRFP43
may exert an inhibitory effect on somatostatin expression in the hypothalamus,
while increasing growth hormone releasing hormone levels in the median
eminence, leading to stimulation of growth hormone synthesis in the pituitary
gland of sheep. Furthermore, QRFP43 administration increased the mean GH
concentration in the blood plasma. Summarizing, QRFP43 may modulate the
somatotrophic axis activity in female sheep.
ACKNOWLEDGEMENTS
The authors express their gratitude to veterinary surgeons K. Roszkowicz-Ostrowska and D. Szkopek, for their assistance in brain surgery. Appreciation is also extended to A. Misztal and K. Biernacka for their help with the experiments and radioimmunological analyses. Special thanks are given to W. Mrozek and R. Druchniak for their excellent care of the animals during the study and I. Wiecka-Bączyńska for providing animal dental equipment.
FUNDING
This research was supported by the funds provided by the National Science Centre, Poland, PRELUDIUM 17 grant No. 2019/33/N/NZ9/00287.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (47)
1.
Amano M., Moriyama S., Ligo M., Kitamura S., Amiya N., Yamamori K., Ukena K., Tsutsui K., 2006. Novel fish hypothalamic neuropeptides stimulate the release of gonadotrophins and growth hormone from the pituitary of sockeye salmon. J. Endocrinol. 188, 417–423,
https://doi.org/10.1677/joe.1.....
3.
Bruzzone F., Lectez B., Alexandre D. et al., 2007. Distribution of 26RFa binding sites and GPR103 mRNA in the central nervous system of the rat. J. Comp. Neurol. 503, 573–591,
https://doi.org/10.1002/cne.21....
4.
Chartrel N., Alonzeau J., Alexandre D., Jeandel L., Alvear-Perez R., Leprince J., Boutin J., Vaudry H., Anouar Y., Llorens-Cortes C., 2011. The RFamide neuropeptide 26RFa and its role in the control of neuroendocrine functions. Front. Neuroendocrinol. 32, 387–397,
https://doi.org/10.1016/j.yfrn....
5.
Chen E.Y., Liao Y.-C., Smith D.H., Barrera-Saldaña H.A., Gelinas R.E., Seeburg P.H., 1989. The human growth hormone locus: Nucleotide sequence, biology, and evolution. Genomics 4, 479–497,
https://doi.org/10.1016/0888-7....
6.
Dubois M.P., 1971. Misé en évidence par immuno-fluorescence des cellules somatotropes et des cellules á prolactine dans l’hypophyse foetale des bovins. Ann. Rech. Vétérinaires 272, 433-435.
7.
Feng D.D., Yang S.K., Loudes C. et al., 2011. Ghrelin and obestatin modulate growth hormone-releasing hormone release and synaptic inputs onto growth hormone-releasing hormone neurons. Eur. J. Neurosci. 34, 732–744,
https://doi.org/10.1111/j.1460....
8.
Findeisen M., Rathmann D., Beck-Sickinger A.G., 2011. RFamide peptides: Structure, function, mechanisms and pharmaceutical potential. Pharmaceuticals 4, 1248–1280,
https://doi.org/10.3390/ph4091....
9.
Hassouna R., Zizzari P., Viltart O., Yang S.K., Gardette R., Videau C., Badoer E., Epelbaum J., Tolle V., 2012. A natural variant of obestatin, Q90L, inhibits ghrelin’s action on food intake and GH secretion and targets NPY and GHRH neurons in mice. PLoS One 7, e51135,
https://doi.org/10.1371/journa....
10.
Iijima N., Matsumoto Y., Yano T.et al., 2001. A novel function of prolactin-releasing peptide in the control of growth hormone via secretion of somatostatin from the hypothalamus. Endocrinology 142, 3239–3243,
https://doi.org/10.1210/endo.1....
11.
Jamil Sami A., 2007. Structure-Function Relation of Somatotropin with Reference to Molecular Modeling. Curr. Protein Pept. Sci. 8, 283–292,
https://doi.org/10.2174/138920....
12.
Jiang Y., Luo L., Gustafson E.L. et al., 2003. Identification and characterization of a novel RF-amide peptide ligand for orphan G-protein-coupled receptor SP9155. J. Biol. Chem. 278, 27652–27657,
https://doi.org/10.1074/jbc.M3....
13.
Johnson M.A., Tsutsui K., Fraley G.S., 2007. Rat RFamide-related peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat. Horm. Behav. 51, 171–180,
https://doi.org/10.1016/j.yhbe....
14.
Kampe J., Wiedmer P., Pfluger P.T. et al., 2006. Effect of central administration of QRFP(26) peptide on energy balance and characterization of a second QRFP receptor in rat. Brain Res. 1119, 133–149.
https://doi.org/10.1016/j.brai....
15.
Katoh K., Takahashi T., Kobayashi Y., Obara Y., 2007. Somatotropic axis and nutrition in young ruminants around weaning time. Asian-Australas. J. Anim. Sci. 20, 1156–1168.
https://doi.org/10.5713/ajas.2....
16.
Kennedy D., 2012. Sheep Reproduction Basics and Conception Rates. Ontario Ministry of Agriculture, Food and Rural Affairs, Ontario, Canada.
17.
Koda A., Ukena K., Teranishi H., Ohta S., Yamamoto K., Kikuyama S., Tsutsui K., 2002. A novel amphibian hypothalamic neuropeptide: Isolation, localization, and biological activity. Endocrinology 143, 411–419,
https://doi.org/10.1210/endo.1....
18.
Lectez B., Jeandel L., El-Yamani F.Z. et al., 2009. The orexigenic activity of the hypothalamic neuropeptide 26RFa is mediated by the neuropeptide y and proopiomelanocortin neurons of the arcuate nucleus. Endocrinology 150, 2342–2350.
https://doi.org/10.1210/en.200....
19.
Leprince J., Bagnol D., Bureau R. et al., 2017. The Arg–Phe-amide peptide 26RFa/glutamine RF-amide peptide and its receptor: IUPHAR Review 24. Br. J. Pharmacol. 174, 3573–3607,
https://doi.org/10.1111/bph.13....
20.
Liposits Z., Sétaló G., Flerkó B., 1984. Application of the silver-gold intensified 3,3′ -diaminobenzidine chromogen to the light and electron microscopic detection of the luteinizing hormone-releasing hormone system of the rat brain. Neuroscience 13, 513–525,
https://doi.org/10.1016/0306-4....
21.
Luque R.M., Córdoba-Chacón J., Gahete M.D., Navarro V.M., Tena-Sempere M., Kineman R.D., Castaño J.P., 2011. Kisspeptin regulates gonadotroph and somatotroph function in nonhuman primate pituitary via common and distinct signaling mechanisms. Endocrinology 152, 957–966,
https://doi.org/10.1210/en.201....
22.
Moriyama S., Kasahara M., Amiya N., Takahashi A., Amano M., Sower S.A., Yamamori K., Kawauchi H., 2007. RFamide peptides inhibit the expression of melanotropin and growth hormone genes in the pituitary of an agnathan, the sea lamprey, Petromyzon marinus. Endocrinology 148, 3740–3749,
https://doi.org/10.1210/en.200....
23.
Navarro V.M., Fernández-Fernández R., Nogueiras R. et al, 2006. Novel role of 26RFa, a hypothalamic RFamide orexigenic peptide, as putative regulator of the gonadotropic axis. J. Physiol. 573, 237–249,
https://doi.org/10.1113/jphysi....
24.
Pfaffl M.W., Horgan G.W., Dempfle L., 2002. Relative expression software tool ( REST © ) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36,
https://doi.org/10.1093/nar/30....
25.
Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P., 2004. Determination of stable housekeeping genes , differentially regulated target genes and sample integrity : BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515,
https://doi.org/10.1023/b:bile....
26.
Polkowska J., Wańkowska M., Romanowicz K., Gajewska A., Misztal T., Wójcik-Gładysz A., 2011. The effect of intracerebroventricular infusions of ghrelin and/or short fasting on the gene expression and immunoreactivity of somatostatin in the hypothalamic neurons and on pituitary growth hormone in prepubertal female lambs. Morphological arguments. Brain Res. 1414, 41–49,
https://doi.org/10.1016/j.brai....
27.
Przybył B.J., Szlis M., Misztal A., Wójcik-Gładysz A., 2025. QRFP43 modulates the activity of the hypothalamic-pituitary-thyroid axis in female sheep. Sci. Rep. 15, 1085,
https://doi.org/10.1038/s41598....
28.
Przybył Bartosz Jarosław, Szlis M., Wójcik-Gładysz A., 2021a. Brain-derived neurotrophic factor (BDNF) affects the activity of the gonadotrophic axis in sheep. Horm. Behav. 131, 104980,
https://doi.org/10.1016/j.yhbe....
29.
Przybył B.J., Szlis M., Wójcik-Gładysz A., 2020. Brain-Derived Neurotrophic Factor Affects mRNA and miRNA Expression of the Appetite Regulating Centre in the Sheep Arcuate Nucleus. Ann. Anim. Sci. 20, 853–869,
https://doi.org/10.2478/aoas-2....
30.
Przybył B.J., Szlis M., Wysoczański B., Wójcik-Gładysz A., 2024. The role of QRFP43 in the secretory activity of the gonadotrophic axis in female sheep. Sci. Rep. 14, 1–14,
https://doi.org/10.1038/s41598....
31.
Przybył B. J., Wójcik-Gładysz A., Gajewska A., Szlis M., 2021b. Brain-derived neurotrophic factor (BDNF) affects somatotrophic axis activity in sheep. J. Anim. Feed Sci. 30, 329–339,
https://doi.org/10.22358/JAFS/....
32.
Qaiser F., Wahab F., Wiqar M.A., Hashim R., Leprince J., Vaudry H., Tena-Sempere M., Shahab M., 2012. Study of the role of novel RF-amide neuropeptides in affecting growth hormone secretion in a representative non-human primate (Macaca mulatta). Endocrine 42, 658–663,
https://doi.org/10.1007/s12020....
33.
Renaville R., Hammadi M., Portetelle D., 2002. Role of the somatotropic axis in the mammalian metabolism. Domest. Anim. Endocrinol. 23, 351–360,
https://doi.org/10.1016/S0739-....
35.
Sandvik G.K., Hodne K., Haug T.M., Okubo K., Weltzien F.A., 2014. RFamide peptides in early vertebrate development. Front. Endocrinol. (Lausanne). 5, 1–18,
https://doi.org/10.3389/fendo.....
36.
Sari I.P., Rao A., Smith J.T., Tilbrook A.J., Clarke I.J., 2009. Effect of RF-amide-related peptide-3 on luteinizing hormone and follicle-stimulating hormone synthesis and secretion in ovine pituitary gonadotropes. Endocrinology 150, 5549–5556,
https://doi.org/10.1210/en.200....
37.
Slaba J., Krejcí P., Skarda J., Huybrechts L.M., Decuypere E., Herrmann H., 1994. Plasma profiles of somatotropin and IGF-I in diary cows following application of two preparations of recombinant bovine somatotropin in a sustained release vehicle. Physiol. Res. 43, 37–43.
38.
Strzetelski J.A., Brzóska F., Kowalski Z.M., Osięgłowski S., 2014. Feeding recommendation for ruminants and feed tables (in Polish). Fundacja Instytutu Zootechniki Państwowego Instytutu Badawczego Patronus Animalium, Kraków, Poland.
39.
Szczepkowska A., Bochenek J., Wójcik M., Tomaszewska-Zaremba D., Antushevich H., Tomczyk M., Skipor J., Herman A.P., 2023. Effect of caffeine on adenosine and ryanodine receptor gene expression in the hypothalamus, pituitary, and choroid plexus in ewes under basal and LPS challenge conditions. J. Anim. Feed Sci. 32, 17–25,
https://doi.org/10.22358/jafs/....
40.
Szlis M., Polkowska J., Skrzeczyńska E., Przybył B.J., Wójcik-Gładysz A., 2018. Does obestatin modulate the hypothalamic appetite-regulating network in peripubertal sheep? J. Anim. Physiol. Anim. Nutr. (Berl). 102, 690–700,
https://doi.org/10.1111/jpn.12....
41.
Szlis M., Przybył B.J., Pałatyńska K., Wójcik-Gładysz A., 2024. QRFP43 modulates the activity of the hypothalamic appetite regulatory centre in sheep. J. Anim. Feed Sci. 33, 281–286,
https://doi.org/10.22358/jafs/....
42.
Takayasu S., Sakurai T., Iwasaki S. et al., 2006. A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice. Proc. Natl. Acad. Sci. U. S. A. 103, 7438–7443,
https://doi.org/10.1073/pnas.0....
43.
Welento J., Szteyn S., Milart Z., 1969. Observations on the stereotaxic configuration of the hypothalamus nuclei in the sheep. Anat. Anz. 124, 1–27.
44.
Wójcik-Gładysz A., Szlis M., Misztal A., Przybył B.J., Polkowska J., 2018. Obestatin stimulates the somatotrophic axis activity in sheep. Brain Res. 1678, 278–287,
https://doi.org/10.1016/j.brai....
45.
Wójcik-Gładysz A., Szlis M., Przybył B.J., Polkowska J., 2019. Obestatin may affect the GnRH/KNDy gene network in sheep hypothalamus. Res. Vet. Sci. 123, 51–58,
https://doi.org/10.1016/j.rvsc....
46.
Wójcik M., Ziȩba D.A., Tomczyk M., Bochenek J., Antushevich H., Krawczyńska A., Herman A.P., 2023. Time-dependent effect of inflammation on the gene expression of pro-inflammatory cytokines and their receptors at the different levels of the somatotropic axis in ewe. J. Anim. Feed Sci. 32, 400–412,
https://doi.org/10.22358/jafs/....
47.
Wojtulewicz K., Tomczyk M., Wójcik M., Bochenek J., Antushevich H., Krawczyńska A., Załȩcki M., Herman A.P., 2023. Circadian and seasonal changes in the expression of clock genes in the ovine pars tuberalis. J. Anim. Feed Sci. 32, 363–371,
https://doi.org/10.22358/jafs/....