REVIEW PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Microbial fermentation followed by enzymatic hydrolysis is an innovative feed preparation approach. During this process, microorganisms metabolise feed components, while enzymes catalyse the breakdown of macromolecular compounds such as proteins and cellulose into smaller, more digestible molecules. This method offers several advantages over traditional feed preparation, including increased fermentation efficiency, improved product quality, and reduced nutritional loss. These benefits can greatly enhance the production performance and overall health of animals. Recent advancements in this field have demonstrated significant potential for improving animal production performance. This article describes the various types of strains and enzymes employed in the preparation of fermented feed and its adoption in animal farming, with a focus on livestock and poultry. The study also briefly discusses the advantages, limitations, and evolution of this technology. As animal husbandry progresses towards greater intensification, scale and technological innovation, the demand for efficient and sustainable feed solutions continues to grow. This review aims to provide practical recommendations for the production and application of fermented feed in modern animal farming.
FUNDING
This work was supported by the Key research project of North Minzu University (Grant No. 2021JCYJ13) and the Natural Science foundation of Ningxia (Grant No. 2022AAC03239).
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (64)
1.
Aderibigbe A., Cowieson A., Sorbara J.O., Adeola O., 2020. Intestinal starch and energy digestibility in broiler chickens fed diets supplemented with α-amylase. Poultry Sci. 99, 5907–5914, https://doi.org/10.1016/j.psj.....
 
2.
Akintunde O., Chukwudozie C., 2021. Hydrolytic and inhibitory activity of two closely related Bacillus isolates. Appl. Environ. Microb. 9, 5–8, https://doi.org/10.12691/jaem-....
 
3.
Alsersy H., Salem A.Z.M., Borhami B.E., Olivares J., Gado H.M., Mariezcurrena M.D., Yacuot M.H., Kholif A.E., El-Adawy M., Hernandez S.R., 2015. Effect of mediterranean saltbush (Atriplex halimus) ensilaging with two developed enzyme cocktails on feed intake, nutrient digestibility and ruminal fermentation in sheep. Anim. Sci. J. 86, 51–58, https://doi.org/10.1111/asj.12....
 
4.
Ayyash M.M., Abdalla A.K., AlKalbani N.S., Baig M.A., Turner M.S., Liu S.Q., Shah N.P., 2021. Invited review: Characterization of new probiotics from dairy and nondairy products-Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. J. Dairy. Sci. 104, 8363–8379, https://doi.org/10.3168/jds.20....
 
5.
Boroojeni F.G., Senz M., Kozłowski K., Boros D., Wisniewska M., Rose D., Männer K., Zentek J., 2017. The effects of fermentation and enzymatic treatment of pea on nutrient digestibility and growth performance of broilers. Animal 11, 1698–1707, https://doi.org/10.1017/S17517....
 
6.
Boroojeni F.G., Kozłowski K., Jankowski J., Senz M., Zentek J., 2018. Fermentation and enzymatic treatment of pea for Turkey nutrition. Anim. Feed. Sci. Tech. 237, 78–88, https://doi.org/10.1016/j.anif....
 
7.
Chen K., Gao C., Han X., Li D., Wang H., Lu F., 2021. Co-fermentation of lentils using lactic acid bacteria and Bacillus subtilis natto increases functional and antioxidant components. J. Food Sci. 86, 475–483, https://doi.org/10.1111/1750-3....
 
8.
Chen L., Guo Y., Liu X., Zheng L., Wei B., Zhao Z., 2024. Cellulase with Bacillus velezensis improves physicochemical characteristics, microbiota and metabolites of corn germ meal during two-stage co-fermentation. World J. Microb. Biot. 40, 59, https://doi.org/10.1007/s11274....
 
9.
Cheng Y.H., Hsiao F.S.H., Wen C.M., Wu C.Y., Dybus A., Yu Y.H., 2019. Mixed fermentation of soybean meal by protease and probiotics and its effects on the growth performance and immune response in broilers. J. Appl. Anim. Res. 47, 339–348, https://doi.org/10.1080/097121....
 
10.
Chuang W.Y., Lin W.C., Hsieh Y.C., Huang C.M., Chang S.C., Lee T.T., 2019. Evaluation of the combined use of saccharomyces cerevisiae and aspergillus oryzae with phytase fermentation products on growth, inflammatory, and intestinal morphology in broilers. Animal 9, 1051, https://doi.org/10.3390/ani912....
 
11.
Dumitru M., Lefter N., Idriceanu L., Habeanu M., 2022. Evaluation of enzymatic potentialities of Bacillus subtilis using as substrate different animal raw materials feed. Anim. Sci. Biotechnol. 55, 118–118.
 
12.
Du Z., Yamasaki S., Oya T., Cai Y., 2023. Cellulase-lactic acid bacteria synergy action regulates silage fermentation of woody plant. Biotechnol. Biof. Biop. 16, 125, https://doi.org/10.1186/s13068....
 
13.
Fan L., Liu X., Zheng X., 2023. Study on preparation of high soluble protein feed with corn gluten meal by co-fermented with bacteria and enzyme. Feed Res. 46, 47–53, https://d.wanfangdata.com.cn/p....
 
14.
Gohar V., Srivastava R., Mishra D., Chauhan N., Kumar S., Behare P.V., Gowane G., Tyagi N., 2024. Xylanase and lactic acid bacteria mediated bioconversion of rice straw co-ensiled with pea waste and wet brewers’ grains as potential livestock feed. Biomass. Convers. Bior. 15, 671–686, https://doi.org/10.1007/s13399....
 
15.
Habte-Tsion H.M., Kumar V., 2018. Nonstarch polysaccharide enzymes-general aspects. In: C.S. Nunes, V. Kumar (Editors). Enzymes in Human and Animal Nutrition. Principles and Perspectives. Academic Press, 183–209, https://doi.org/10.1016/B978-0....
 
16.
He L., Zhou W., Wang Y., Wang C., Chen X., Zhang Q., 2018. Effect of applying lactic acid bacteria and cellulase on the fermentation quality, nutritive value, tannins profile and in vitro digestibility of Neolamarckia cadamba leaves sUage. J. Anim. Physiol. An. N. 102, 1429–1436, https://doi.org/10.1111/jpn.12....
 
17.
Heng X., Chen H., Lu C., Feng T., Li K., Gao E., 2022. Study on synergistic fermentation of bean dregs and soybean meal by multiple strains and proteases. LWT 154, 112626, https://doi.org/10.1016/j.lwt.....
 
18.
Huang W., Chang J., Wang P., Liu C., Yin Q., Song A., Gao T., Dang X., Lu F., 2019. Effect of compound probiotics and mycotoxin degradation enzymes on alleviating cytotoxicity of swine jejunal epithelial cells induced by aflatoxin B1 and zearalenone. Toxins 11, 12, https://doi.org/10.3390/toxins....
 
19.
Hu Y., He Y., Gao S., Liao Z., Lai T., Zhou H., Chen Q., Li L., Gao H., Lu W., 2020. The effect of a diet based on rice straw co-fermented with probiotics and enzymes versus a fresh corn stover-based diet on the rumen bacterial community and metabolites of beef cattle. Sci. Rep. 10, 10721, https://doi.org/10.1038/s41598....
 
20.
Jach M.E., Serefko A., 2018. Nutritional yeast biomass: characterization and application. In: A.M. Holban, A.M. Grumezescu (Editors). Diet, Microbiome and Health. Academic Press, 237–270, https://doi.org/10.1016/B978-0....
 
21.
Jazi V., Boldaji F., Dastar B., Hashemi S.R., Ashayerizadeh A. 2017. Effects of fermented cottonseed mealon the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. Brit. Poultry Sci. 4, 402–408, https://doi.org/10.1080/000716....
 
22.
Jiang B., Wang T., Zhou Y., Li F., 2020a. Effects of enzyme + bacteria treatment on growth performance, rumen bacterial diversity, KEGG pathways, and the CAZy spectrum of Tan sheep. Bioengineered 11, 1221–1232, https://doi.org/10.1080/216559....
 
23.
Jiang B., Wang T., Zhou Y., Li F., 2021. Effects of buckwheat straw and alfalfa hay treated by enzyme and bacteria on growth performance, slaughter performance, rumen bacterial diversity and carbohydrate-active enzymes of Tan sheep (in Chenese). Chin. J. Anim. Nutr. 33, 2335–2346, https://doi.org/10.3969/j.issn....
 
24.
Kim S.W., Less J.F., Wang L., Yan T., Kiron V., Kaushik S.J., Lei X.G., 2019. Meeting Global Feed Protein Demand: Challenge, Opportunity, and Strategy. Annu. Rev. Anim. Biosci. 7, 221–243, https://doi.org/10.1146/annure....
 
25.
Kim T.I., Mayakrishnan V., Lim D.H., Yeon J.H., Baek K.S., 2018. Effect of fermented total mixed rations on the growth performance, carcass and meat quality characteristics of Hanwoo steers. Anim. Sci. J. 89, 606–615, https://doi.org/10.1111/asj.12....
 
26.
Lai A., Huang Y., Luo H., Jin Y., Wang L., Chen B., Deng K., Huang W., Zhang Y., 2024. Ruminal degradation characteristics of bagasse with different fermentation treatments in the rumen of beef cattle. Anim. Sci. J. 95, e13937, https://doi.org/10.1111/asj.13....
 
27.
Lamp A.E., Evans A.M., Moritz J.S., 2015. The effects of pelleting and glucanase supplementation in hulled barley based diets on feed manufacture, broiler performance, and digesta viscosity. J. Appl. Poultry Res. 24, 295–303, https://doi.org/10.3382/japr/p....
 
28.
Leelasuphakul W., Sivanunsakul P., Phongpaichit S., 2006. Purification, characterization and synergistic activity of β-1, 3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzyme. Microb. Tech. 38, 990–997, https://doi.org/10.1016/j.enzm....
 
29.
Li F., Xie Y., Gao X., Shan M., Sun C., Niu Y.D., Shan A., 2020. Screening of cellulose degradation bacteria from Min pigs and optimization of its cellulase production. Electron. J. Biotechn. 48, 29–35, https://doi.org/10.1016/j.ejbt....
 
30.
Li J., Yuan X., Dong Z., Mugabe W., Shao T., 2018. The effects of fibrolytic enzymes, cellulolytic fungi and bacteria on the fermentation chacteristics, structural carbohydrates degradation, and enzymatic conversion yields of Pennisetum sinese silage. Bioresource Technol. 264, 123–130, https://doi.org/10.1016/j.bior....
 
31.
Li P., Ji X., Deng X., Hu S., Wang J., Ding K., Liu N., 2022. Effect of rapeseed meal degraded by enzymolysis and fermentation on the growth performance, nutrient digestibility and health status of broilers. Arch. Anim. Nutr. 76, 221–232, https://doi.org/10.1080/174503....
 
32.
Li W., Cheng P., Zhang J.B., Zhao L.M., Ma Y.B., Ding K., 2021. Synergism of microorganisms and enzymes in solid-state fermentation of animal feed. A review. J. Anim. Feed Sci. 30, 3–10, https://doi.org/10.22358/jafs/....
 
33.
Li Y., Li L., Tian X., Huang R., Ma S., 2023. Effect of bacteria-enzyme synergistic modified bran on qualities of recombinant whole wheat flour and its noodles. J. Light. Ind. 38, 18-27, https://doi.org/10.12187/2023.....
 
34.
Lin B., Yan J., Zhong Z., Luo J., Zhou X., 2021. Response surface methodology to optimize the processing parameters for producing corncob fermentation feed by bacteria coupled fermentation with enzymes. J. Longyan U. 39, 55–60, https://doi.org/10.16813/j.cnk....
 
35.
Long C., Rosch C., Vrise S.D., Schols H., Venema K., 2020. Cellulase and alkaline treatment improve intestinal microbial degradation of recalcitrant fibers of rapeseed meal in pigs. J. Agr. Food Chem. 68, 11011–11025, https://doi.org/10.1021/acs.ja....
 
36.
Long S., Hu J., Mahfuz S., Ma H., Piao X., 2021. Effects of dietary supplementation of compound enzymes on performance, nutrient digestibility, serum antioxidant status, immunoglobulins, intestinal morphology and microbiota community in weaned pigs. Arch. Anim. Nutr. 75, 31–47, https://doi.org/10.1080/174503....
 
37.
Liu X., Su Q., Ma X., Chen J., Liu M., Li W., Li H., Wang X., Guo J., 2024. Effects of compound chinese herbal medicine fermented with bacteria and enzymes on growth performance and serum immune, antioxidant and growth-related hormone indices of weaned piglets (in Chenese). Chin. J. Anim. Nutr. 36, 4233–4242, https://www.chinajan.com/CN/10....
 
38.
Mukherjee R., Chakraborty R., Dutta A., 2016. Role of fermentation in improving nutritional quality of soybean meal-A Review. Asian-Australas. J. Anim. Sci. 29, 1523–1529, https://doi.org/10.5713/ajas.1....
 
39.
Patel A.K., Dong C.D., Chen C.W., Pandey A., Singhania R.R., 2023. Production, purification, and application of microbial enzymes. In: G. Brahmachari (Editor). Biotechnology of Microbial Enzymes. Production, Biocatalysis, and Industrial Applications. Second edition. Academic Press, 25–57, https://doi.org/10.1016/B978-0....
 
40.
Patterson R., Rogiewicz A., Kiarie E.G., Slominski B.A., 2023. Yeast derivatives as a source of bioactive components in animal nutrition: a brief review. Front. Vet. Sci. 9, 1067383, https://doi.org/10.3389/fvets.....
 
41.
Palkovicsné Pézsa N., Kovács D., Rácz B., Farkas O., 2022. Effects of Bacillus licheniformis and Bacillus subtilis on gut barrier function, proinflammatory response, ROS production and pathogen inhibition properties in IPEC-J2-Escherichia coli/Salmonella Typhimurium co-culture. Microorganisms 10, 936, https://doi.org/10.3390/microo....
 
42.
Park J.H., Lee S.I., Kim I.H., 2020. The effect of protease on growth performance, nutrient digestibility, and expression of growth-related genes and amino acid transporters in broilers. J. Anim. Sci. Technol. 62, 614–627, https://doi.org/10.5187/jast.2....
 
43.
Rahim N.A., Indera Luthfi A.A., Abdul P.M., Jahim J.M., Bukhari N.A., 2022. Towards sustainable production of bio-based lactic acid via a bio-based technical route: recent developments and the use of palm kernel cakes in the bioconversion. Bioresources 17, 3781–3809, https://doi.org/10.15376/biore....
 
44.
Song G., Sun C., Yuan X., Bao L., 2022. Application progress of bacteria-enzyme co-fermentation feed in animal husbandry. Mod. J. Anim. Husb. Vet. Med. 11, 68–71, https://doi.org/10.3969/j.issn....
 
45.
Su L.W., Cheng Y.H., Hsiao F.S.H., Han J.C., Yu Y.H., 2018. Optimization of mixed solid-state fermentation of soybean meal by Lactobacillus species and Clostridium butyricum. Pol. J. Microbiol. 67, 297–305, https://doi.org/10.21307/pjm-2....
 
46.
Sun Z., Mei L., Huang X., Li Y., 2021. Research progress on fermented feed by microbial cooperating with enzyme and its application to animal production (in Chenese). Chin. J. Anim. Sci. 57, 42–47, https://d.wanfangdata.com.cn/p....
 
47.
Sun H., Tang J.W., Yao X.H., Wu Y.F., Wang X., Feng J., 2012. Improvement of the Nutritional Quality of Cottonseed Meal by Bacillus subtilis and the Addition of Papain. Int. J. Agric. Biol. 14, 74, 563–568.
 
48.
Tang Q., He R., Huang F., Liang Q., Zhou Z., Zhou J., Wang Q., Zou C., Gu Q., 2023. Effects of ensiling sugarcane tops with bacteria-enzyme inoculants on growth performance, nutrient digestibility, and the associated rumen microbiome in beef cattle. J. Anim. Sci. 101, skad326, https://doi.org/10.1093/jas/sk....
 
49.
van Schie L., Borgers K., Michielsen G., Plets E., Vuylsteke M., Tiels P., Festjens N., Callewaert N., 2021. Exploration of synergistic action of cell wall-degrading enzymes against Mycobacterium tuberculosis. Antimicrob. Agents. Ch. 65, 10, https://doi.org/10.1128/AAC.00....
 
50.
Vieco-Saiz N., Belguesmia Y., Raspoet R., Auclair E., Gancel F., Kempf I., Drider D., 2019. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 10, 57, https://doi.org/10.3389/fmicb.....
 
51.
Vishnu Prasad J., Sahoo T.K., Naveen S., Jayaraman G., 2020. Evolutionary engineering of Lactobacillus bulgaricus reduces enzyme usage and enhances conversion of lignocellulosics to D-lactic acid by simultaneous saccharification and fermentation. Biotechnol. biofuels. 13, 1–11, https://doi.org/10.1186/s13068....
 
52.
Wang L., Qin R., Abushiman M., Liang J., Zhao C., Wang W., Liu Y., Zhang W., 2022. Study on screening of compound preparation of Lentinus edoides chaff fermented by bacterial enzyme. Feed Res. 45, 58–63, https://doi.org/10.13557/j.cnk....
 
53.
Wang Z., Tang H., Liu G., Gong H., Li Y., Chen Y., Yang Y., 2023. Compound probiotics producing cellulase could replace cellulase preparations during solid-state fermentation of millet bran. Bioresource Technol. 385, 129457, https://doi.org/10.1016/j.bior....
 
54.
Wu M., Chen X., Li S., Bao S., Zhou X., Mou L., Jiang L., Liu Z., 2022. Effect of dietary fermented feed with tea residue, fungus and enzyme on growth performance, slaughter performance and muscle flavor of cyan-shank partridge chicken (in Chinese). China Poultry 44, 43–50, https://d.wanfangdata.com.cn/p....
 
55.
Xu D., Ding Z., Bai J., Ke W., Zhang Y., Li F., Guo X., 2020. Evaluation of the effect of feruloyl esterase-producing Lactobacillus plantarum and cellulase pretreatments on lignocellulosic degradation and cellulose conversion of co-ensiled corn stalk and potato pulp. Bioresource. Technol. 310, 123476, https://doi.org/10.1016/j.bior....
 
56.
Yue L., Wang H., Kuerban Z., Mao J., Tu Z., Shan Q., 2021. Optimization of the process of sweet sorghum stalk by co-fermentation of enzyme and microorganisms. Cereal Feed. Ind. 02, 49–53, https://d.wanfangdata.com.cn/p....
 
57.
Zhao Y., Chen D., Tian G., Zheng P., Pu J., Yu B., 2024. Co-fermentation of hot-pressed rapeseed meal with multiple strains and cellulase: Evaluating changes in protein quality and metabolite profiles. LWT 210, 116880, https://doi.org/10.1016/j.lwt.....
 
58.
Zhang A., He W., Han Y., Zheng A., Chen Z., Meng K., Yang P., Liu G., 2024. Cooperative fermentation using multiple microorganisms and enzymes potentially enhances the nutritional value of spent mushroom substrate. Agriculture 14, 629, https://doi.org/10.3390/agricu....
 
59.
Zhang R., Han S., Wang T., Lu Q., Li J., 2021. Application progress of microbial enzyme co fermentation feed in piglets (in Chinese). Feed Res. 44, 131–134, https://doi.org/10.13557/j.cnk....
 
60.
Zhang Y., Shi C., Wang C., Lu Z., Wang F., Feng J., Wang Y., 2017. Effect of soybean meal fermented with Bacillus subtilis BS12 on growth performance and small intestinal immune status of piglets. Food Agr. Immunol. 29, 133–146, https://doi.org/10.1080/095401....
 
61.
Zhang Y., Zhou X., Zhang A., Zhou G., Li Y., Yan Y., Huang J., Li X., Wang X., 2022. The application and research progress of unconventional protein raw materials in livestock and poultry breeding (in Chinese). China Feed 9–14, https://d.wanfangdata.com.cn/p....
 
62.
Zhang W., Deng Q., Zhu B., Xiao D., Chen Q., Pan H., Chen J., 2024. Improving the quality of low-grade tobacco by enzymatic treatment and co-fermentation with yeast and lactic acid bacteria. Appl. Biochem. Biotech. 613–630, https://doi.org/10.1007/s12010....
 
63.
Zheng H., Yin X., Liu Z., Zhang Y., Liu D., Wang Y., Liu Q., Wang C., Li J., Xu Y., 2023. Effects of fermented distiller′s grains and bran mixture on growth performance, slaughter performance and Immune (in Chinese). Organ Index of broilers. China Poultry 45, 72–78, https://d.wanfangdata.com.cn/p....
 
64.
Zhu J.J., Gao M.X., Song X.J., Zhao L., Li Y.W., Hao Z.H., 2018. Changes in bacterial diversity and composition in the faeces and colon of weaned piglets after feeding fermented soybean meal. J. Med. Microbiol. 67, https://doi.org/10.1099/jmm.0.....
 
ISSN:1230-1388
Journals System - logo
Scroll to top