REVIEW PAPER
Evaluating the potential of fermented concentrate feeds
on lamb growth performance: A meta-analysis
More details
Hide details
1
Inner Mongolia University, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock,
010021 Hohhot, China
2
Inner Mongolia University, National Sheep Genetic Evaluation Center, 010070 Hohhot, China
3
Universitas Sebelas Maret, Vocational School, 57126 Surakarta, Indonesia
4
National Research Centre, Department of Dairy Science, 12622 Giza, Egypt
5
University of Leipzig, Faculty of Veterinary Medicine, Institute of Animal Nutrition, Nutrition Diseases and Dietetics,
04103 Leipzig, Germany
6
Poznań University of Life Sciences, Faculty of Veterinary Medicine and Animal Sciences, Department of Animal Nutrition,
60-637 Poznań, Poland
7
Universitas Padjadjaran, Faculty of Animal Husbandry, Department of Animal Nutrition and Feed Technology,
45363 Jatinangor, Indonesia
8
Poznań University of Life Sciences, Faculty of Veterinary Medicine and Animal Sciences, Department of Genetics and Animal
Breeding, 60-637 Poznań, Poland
9
Assiut University, Faculty of Agriculture, Department of Animal Production, 71515 Asyut, Egypt
10
Inner Mongolia Agricultural University, Faculty of Animal Science, Department of Animal Genetics, Breeding, and Reproduction,
010018 Hohhot, China
Publication date: 2025-09-26
Corresponding author
M. Gao
State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
KEYWORDS
TOPICS
ABSTRACT
Fermented feeds (FFs) are known for high nutritional value and
digestibility, but their impact on sheep growth performance remains inconsistent
between studies. This meta-analysis systematically evaluates the effect of
FFs on sheep growth. A comprehensive search was conducted using Google
Scholar, ScienceDirect, and PubMed databases to identify relevant studies
published between January 1990 and June 2024. Eleven studies comprising
a total of 366 lambs met the established criteria. Growth parameters, including
average daily gain (ADG), average daily feed intake (ADFI), and feed
conversion ratio (FCR) were extracted and analysed using a random-effects
model. Sensitivity and subgroup analyses were conducted to assess the
stability of the results. FF supplementation as an energy source significantly
improved ADG by 2.86 g/day (95% CI: 0.24–5.48, P = 0.032) but did not affect
ADFI (P > 0.05). When used as a protein source, FF elevated ADFI (95% CI:
0.93–21.95, P = 0.032). Marked improvements in FCR were observed with both
energy (standardised mean difference (SMD) = −3.95; P < 0.001) and proteinbased
FF (SMD= −5.02; P < 0.001). Microbial inoculants (Lactobacillus/Bacillus
and Saccharomyces cerevisiae) positively affected ADG and FCR, although
with significant heterogeneity (I2 > 75%), likely due to variations in substrates,
strains, or feeding protocols. FFs used as either an energy or protein source can
significantly improve lamb growth performance, particularly in terms of FCR and
ADG, with microbial agents playing an important role.
FUNDING
This work was supported by the Bayannur
Science And Technology Key Breakthrough Project
(Grant No. NMKJXM202404-1) and the National
Ministry-Region Joint Project, China (Grant No.
21132), specifically under subproject (Grant No.
10000-23112101/177). The publication was cofinanced
by the Inner Mongolia Autonomous
Region Science and Technology Plan (Grant No.
2023YFHH0114), the Inner Mongolia Autonomous
Region Open Competition Projects (Grant No.
2022JBGS0024), the Agriculture Research System of
China (Cars38), and the Inner Mongolia Autonomous
Region Department of Education first-class scientific
research project (Grant No. YLXKZX-ND-026;
YLXKZX-ND-029).
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (57)
1.
Abdelrahman M., Wang W., Lv H.M., Di Z., An Z., Lijun W., Shaukat A., Bo W., Guangsheng Z., Liguo Y., 2022. Evaluating the effect of forage rape (Brassica napus) ensiling kinetics on degradability and milk performance as non-conventional forage for dairy buffalo. Front. Vet. Sci. 9, 926906,
https://doi.org/10.3389/fvets.....
2.
Abd El-Aziz A., Elfadadny A., Abo Ghanima M., Cavallini D., Fusaro I., Giammarc M., Buonaiuto G., El-Sabrout K., 2024. Nutritional value of oregano-based products and its effect on rabbit performance and health. Animals 14, 3021,
https://doi.org/10.3390/ani142....
3.
Ban Y., Guan, L.L., 2021. Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. J. Anim. Sci. Biotechnol. 12, 109,
https://doi.org/10.1186/s40104....
4.
Bandla N., Südekum SK-H., Gerlach K., 2023. Role of silage volatile organic compounds in influencing forage choice behavior and intake in ruminants. Anim. Feed Sci. Technol. 307, 115853,
https://doi.org/10.1016/j.anif....
5.
Bumbieris Junior V.H., de Pietro Guimarães V.A., de Azambuja Ribeiro E.L., das Dores Ferreira da Silva L., Jobim C.C., Mizubuti I.Y., Camilo I.M., Grandis F.A., Zanin E., 2020. Productive performance of lambs fed with high-moisture triticale grain ensiled with different additives. Can. J. Anim. Sci. 100, 323–329,
https://doi.org/10.1139/cjas-2....
6.
Cavallini D., Mammi L.M., Palmonari A., García-González R., Chapman J.D., McLean D.J. Formigoni A., 2022. Effect of an immunomodulatory feed additive in mitigating the stress responses in lactating dairy cows to a high concentrate diet challenge. Animals 12, 2129,
https://doi.org/10.3390/ani121....
7.
Castillo A.R., Di Rienzo J.A., Cavallini D., 2025. Effect of a mix of condense and hydrolysable tannins feed additive on lactating dairy cows’ services per conception and days open. Vet. Anim. Sci. 27, 100434,
https://doi.org/10.1016/j.vas.....
8.
Chavira J.S., 2016. Potential use of nonconventional silages in ruminant feeding for tropical and subtropical areas. Adv. Silage Prod. Util. 5, 85–98,
https://doi.org/10.5772/64382.
9.
Chen H., Guo B., Yang M., Luo J., Hu Y., Qu M., Song X., 2021. Response of growth performance, blood biochemistry indices, and rumen bacterial diversity in lambs to diets containing supplemental probiotics and Chinese medicine polysaccharides. Front. Vet. Sci. 8, 681389,
https://doi.org/10.3389/fvets.....
10.
Chisoro P., Jaja I,F., Assan N., 2023. Incorporation of local novel feed resources in livestock feed for sustainable food security and circular economy in Africa. Front. Sustain. 4, 1251179,
https://doi.org/10.3389/frsus.....
11.
Dai Z., Cui L., Li J., Wang B., Guo L., Wu Z., Zhu W., Wu G., 2019. Fermentation techniques in feed production. In: Bazer F.W., Lamb G.C., Wu G.B.T.-A.A. (Editors). Animal Agriculture: Sustainability, Challenges and Innovations 407–429,
https://doi.org/10.1016/B978-0....
12.
Egger M., Smith G.D., Schneider M., Minder C., 1997. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634,
https://doi.org/10.1136/bmj.31....
13.
Feizi L.K., Seifdavati J., Rafiee H., Rezazadeh F., Meléndez J.H., Molina O.M., Yasseen Elghandour M.M.M., Salem A.Z.M., 2024. Biotechnological valorization of fermented soybean meal for sustainable ruminant and non-ruminant feeding: modulating ruminal fermentation, gut or ruminal microflora, immune system, and growth performance. Biomass Convers. Biorefinery. 14, 9047–9058,
https://doi.org/10.1007/s13399....
14.
Flores-Hernández A., Macías-Rodrígue F.J., García-Herrera G., Ortega-Sánche J.L., Meza-Herrera C., Murillo-Amador B., 2019. Quality of fermented cactus pear (Opuntia spp.) and its effect on liveweight gain of dorper lambs. J. Prof. Assoc. Cactus. Dev. 21, 57–70,
http://doi.org/10.56890/jpacd.....
15.
Gao M., Cieślak A., Kierończyk B., Huang H., Yanza Y.R., Zaworska-Zakrzewska A., Józefiak D., Szumacher-Strabel M., 2020. Effects of raw and fermented rapeseed cake on growth performance, methane production, and breast meat fatty acid composition in broiler chickens. Animals 10, 1–19,
https://doi.org/10.3390/ani101....
16.
Gasparini M., Brambilla G., Menotta S., Albrici G., Avezzù V., Vitali R., Buonaiuto G., Lamanna M., Cavallini D., 2024. Sustainable dairy farming and fipronil risk in circular feeds: insights from an Italian case study. Food Addit. Contam. Part A. 41, 1582–1593,
https://doi.org/10.1080/194400....
17.
Hadjipanayiotou M., 1999. Feeding ensiled crude olive cake to lactating Chios ewes, Damascus goats and Friesian cows. Livest. Prod. Sci. 59, 61–66,
https://doi.org/10.1016/S0301-....
18.
Hafez A.A., Ragab M.T., Fawzy M.A., El-Kattan A.M., Elsayed A.A., 2022. Molecular characterization of some pathogenic bacterial strains and hematobiochemical profile in Barki sheep with diarrhea in Siwa Oasis. Mansoura Vet. Med. J. 23, 59–69,
https://doi.org/10.21608/MVMJ.....
19.
Halmemies-Beauchet-Filleau A., Rinne M., Lamminen M., Mapato C., Ampapon T., Wanapat M., Vanhatalo A., 2018. Review: Alternative and novel feeds for ruminants: Nutritive value, product quality and environmental aspects. Animal 12, 295–309,
https://doi.org/10.1017/S17517....
21.
Ibrahim D., Abdelfattah-Hassan A., Arisha A.H., El-Aziz R.M.A., Sherief W.R.I.A., Adil S.H., El Sayed R., Metwally A.E., 2020. Impact of feeding anaerobically fermented feed supplemented with acidifiers on its quality and growth performance, intestinal villi and enteric pathogens of mulard ducks. Livest. Sci. 242, 104299,
https://doi.org/10.1016/j.livs....
22.
Irawan A., Sofyan A., Ridwan R., Hassim H.A., Respati A.N., Wardani W.W., Sadarman Astuti W.D., Jayanegara A., 2021. Effects of different lactic acid bacteria groups and fibrolytic enzymes as additives on silage quality: A meta-analysis. Biores. Technol. Reports. 14, 100654,
https://doi.org/10.1016/j.bite....
23.
Irawan A., Ningsih N., Hafizuddin Rusli R.K., Suprayogi W.P.S., Akhirini N., Hadi R.F., Setyono W., Jayanegara A., 2022. Supplementary n-3 fatty acids sources on performance and formation of omega-3 in egg of laying hens: a meta-analysis. Poult. Sci. 101, 101566,
https://doi.org/10.1016/j.psj.....
24.
Jalal H., Doğan S.C., Giammarco M., Cavallini D., Lanzoni L., Pezzi P., Akram M.Z., Fusaro I., 2024. Evaluation of dietary supplementation of garlic powder (Allium sativum) on the growth performance, carcass traits and meat quality of Japanese quails (Coturnix coturnix japonica). Poult. Sci. 103, 104231,
https://doi.org/10.1016/j.psj.....
25.
Koakoski D.L., Bordin T., Cavallini D., Buonaiuto G., 2024. A preliminary study of the effects of gaseous ozone on the microbiological and chemical characteristics of whole-plant corn silage. Fermentation 10, 398,
https://doi.org/10.3390/fermen....
26.
Lamanna M., Muca E., Buonaiuto G., Formigoni A., Cavallini D., 2025. From posts to practice: Instagram's role in veterinary dairy cow nutrition education—How does the audience interact and apply knowledge? A survey study. J. Dairy Sci. 108, 1659-1671,
https://doi.org/10.3168/jds.20....
27.
Li F., Ren S., Zhang W., Xu Z., Xie G,. Chen Y., Tu Y., Li Q., Zhou S., Li Y., 2013. Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. Biores. Technol. 130, 629–637,
https://doi.org/10.1016/j.bior....
28.
Malherbe S., Bauer F.F., DuToit M., 2007. Understanding problem fermentations--a review. South African J. Enol. Vitic. 28, 169–186,
https://doi.org/10.21548/28-2-....
29.
Malik R.C., Razzaque M.A., Yateem A.M., Dandan A.H., El-Nakhla S.M., Al-Bather A.W., 1999. Growth, feed conversion efficiency and carcass composition of arabian fat-tailed lambs fed diets with different proportions of a cardboard-based protein-enriched fermented feed. Small Rumin. Res. 33, 181–187,
https://doi.org/10.1016/S0921-....
30.
McCarthy F.D., Norton S.A., McClure W.H., 1990. Utilization of an ensiled wet brewers’ grains-corn mixture by growing lambs. Anim. Feed Sci. Technol. 28, 29–38,
https://doi.org/10.1016/0377-8....
31.
Nath P.C., Ojha A., Debnath S., Sharma M., Nayak P.K., Sridhar K., Inbaraj B.S., 2023. Valorization of Food Waste as Animal Feed: A Step towards Sustainable Food Waste Management and Circular Bioeconomy. Animals 13, 1366,
https://doi.org/10.3390/ani130....
32.
Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., 2022. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Rev. Panam. Salud Publica/Pan Am. J. Public Heal. 46, 1–8,
https://doi.org/10.1136/bmj.n7....
33.
Palmonari A., Cavallini D., Sniffen C.J., Fernandes L., Holder P., Fusaro I., Giammarco M., Formigoni A., Mammi L.M.E., 2021. In vitro evaluation of sugar digestibility in molasses. Ital. J. Anim. Sci. 20, 571–577,
https://doi.org/10.1080/182805....
34.
Piercy E., Verstraete W., Ellis P.R., Banks M., Rockström J., Smith P., Witard O.C., Hallett J., Hogstrand C., Knott G., 2022. A sustainable waste-to-protein system to maximise waste resource utilisation for developing food- and feed-grade protein solutions. Green Chem. 25, 808–832,
https://doi.org/10.1039/d2gc03....
35.
Putra R.P., Astuti D., Respati A.N., Ningsih N., Yano A.A., Gading B.M.W.T., Jayanegara A., Sholikin M.M., Hassim H.A., 2024. Protective effects of feed additives on broiler chickens exposed to aflatoxins-contaminated feed: a systematic review and meta-analysis. Vet. Res. Commun. 48, 225–244,
https://doi.org/10.1007/s11259....
36.
Qiu Y., Zhao H., He X., Zhu F., Zhang F., Liu B., Liu Q., 2023. Effects of fermented feed of Pennisetum giganteum on growth performance, oxidative stress, immunity and gastrointestinal microflora of Boer goats under thermal stress. Front. Microbiol. 13, 1030262,
https://doi.org/10.3389/fmicb.....
37.
Rehemujiang H., Yusuf H.A., Ma T., Diao Q.Y., Kong L., Kang L., Tu Y., 2023. Fermented cottonseed and rapeseed meals outperform soybean meal in improving performance, rumen fermentation, and bacterial composition in Hu sheep. Front. Microbiol. 14, 1119887,
https://doi.org/10.3389/fmicb.....
38.
Scherer R., Gerlach K., Südekum K.H., 2015. Biogenic amines and gamma-amino butyric acid in silages: Formation, occurrence and influence on dry matter intake and ruminant production. Anim. Feed. Sci. Technol. 210, 1–16,
https://doi.org/10.1016/j.anif....
40.
Shoshe N.Z., Baset M.A., Uddin M.J., Khan M.M.H., 2024. Effect of yeast (S.cerevisiae) fermented sugarcane bagasse and concentrate on nutrient intake, digestibility, and growth performance of sheep. J. Agric. Livest. Farming. 1, 17–22,
https://doi.org/10.61577/jalf.....
41.
Su Y., Chen G., Cai Y., Gao B., Zhi X., Chang F., 2020. Effects of broussonetia papyrifera-fermented feed on the growth performance and muscle quality of Hu sheep. Can. J. Anim. Sci. 100, 771–780,
https://doi.org/10.1139/cjas-2....
42.
Vastolo A., Serrapica F., Cavallini D., Fusaro I., Atzori A.S., Todaro M., 2024. Alternative and novel livestock feed: reducing environmental impact. Front. Vet. Sci. 11, 1441905,
https://doi.org/10.3389/fvets.....
44.
Wang C., Shi C., Su W., Jin M., Xu B., Hao L., Zhang Y., Lu Z., Wang F., Wang Y., 2020. Dynamics of the physicochemical characteristics, microbiota, and metabolic functions of soybean meal and corn mixed substrates during two-stage solid-state fermentation. mSystems 5, 10–28,
https://doi.org/10.1128/msyste....
45.
Wang W., Wang Y., Cui Z., Yang Y., An X., Qi J., 2022. Fermented wheat bran polysaccharides intervention alters rumen bacterial community and promotes rumen development and growth performance in lambs. Front. Vet. Sci. 9, 841406,
https://doi.org/10.3389/fvets.....
46.
Wan X., Wang W., Liu J., Tong T., 2014. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 14, 1–13,
https://doi.org/10.1186/1471-2....
47.
Wang Y., Wang R., Hao X., Hu Y., Guo T., Zhang J., Wang W., Shi X., An X., Qi J., 2020. Growth performance, nutrient digestibility, immune responses and antioxidant status of lambs supplemented with humic acids and fermented wheat bran polysaccharides. Anim. Feed Sci. Technol. 269, 114644,
https://doi.org/10.1016/j.anif....
48.
Wani N.R., Rather R.A., Farooq A., Padder S.A., Baba T.R., Sharma S., Mubarak N.M., Khan A.H., Singh P., Ara S., 2024. New insights in food security and environmental sustainability through waste food management. Environ. Sci. Pollut. Res. 31, 17835–17857,
https://doi.org/10.1007/s11356....
49.
Wu K., Feng H., Ma J., Wang B., Feng J., Zhang H., Jiang Y., Li R., Wang J., Yang Z., 2022. Prevalence, toxin-typing and antimicrobial susceptibility of Clostridium perfringens in sheep with different feeding modes from Gansu and Qinghai provinces, China. Anaerobe 73, 102516,
https://doi.org/10.1016/j.anae....
50.
Wu Z., Zhang M., Wang L., Tu Y., Zhang J., Xie G., Zou W., Li F., Guo K., Li Q., 2013. Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants. Biotechnol. Biofuels. 6, 1–14,
https://doi.org/10.1186/1754-6....
51.
Xu B., Li Z., Wang C., Fu J., Zhang Y., Wang Y., Lu Z., 2020. Effects of fermented feed supplementation on pig growth performance: A meta-analysis. Anim. Feed Sci. Technol. 259, 114315,
https://doi.org/10.1016/j.anif....
52.
Yusuf H.A., Rehemujiang H., Ma T., Piao M., Huo R., Tu Y., 2022. Fermented total mixed ration with cottonseed meal or rapeseed meal improved growth performance and meat quality of Hu lamb compared to total mixed ration with soybean meal. Fermentation 8, 576,
https://doi.org/10.3390/fermen....
53.
Zentek J., Goodarzi B.F., 2020. (Bio)Technological processing of poultry and pig feed: Impact on the composition, digestibility, anti-nutritional factors and hygiene. Anim. Feed Sci. Technol. 268, 114576,
https://doi.org/10.1016/j.anif....
54.
Zhang C., Zhang C., Du M., Wang Y., Zhang G., Lee Y., 2020. Effects of dietary supplementation with different fermented feeds on performance, nutrient digestibility, and serum biochemical indexes of fattening lambs. Anim. Biosci. 34, 633,
https://doi.org/10.5713/ajas.2....
55.
Zhang M., Yang Z., Wu G., Xu F., Zhang J., Luo X., Ma Y., Pang H., Duan Y., Chen J., 2024. Effects of probiotic-fermented feed on the growth profile, immune functions, and intestinal microbiota of Bamei piglets. Animals 14, 647,
https://doi.org/10.3390/ani140....
56.
Zhang T., Wang S., Liu R., Liu T., Zhang Y., Yang L., Kang L., Xie J., Jin Y., Duan Y., 2023. Effects of different feeds on growth performance and meat quality of hybrid lambs. Qual. Assur. Saf. Crop Foods. 15, 182–192,
https://doi.org/10.15586/qas.v....
57.
Zhang W., Yi Z., Huang J., Li F., Hao B., Li M., Hong S., Lv Y., Sun W., Ragauskas A., 2013. Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biores Technol. 130, 30–37,
https://doi.org/10.1016/j.bior....