0.917
IF5
1.024
IF
Q2
JCR
0.90
CiteScore
0.489
SJR
Q2
SJR
20
MNiSW
142.18
ICV
ORIGINAL PAPER
 
CC-BY 4.0
 
 

Effects of sucrose, formic acid and lactic acid bacteria inoculant on quality, in vitro rumen digestibility and fermentability of drooping wild ryegrass (Elymus nutans Griseb.) silage

Q. Zhang 1, 2,  
H. Yang 3,  
Z. Yu 2  
 
1
South China Agricultural University, College of Forestry and Landscape Architecture Guangzhou 510642, P.R. China
2
China Agricultural University, College of Animal Science and Technology, Institute of Grassland Science, Beijing100193, P.R. China
3
China Agricultural University, College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, Beijing100193, P.R. China
J. Anim. Feed Sci. 2017;26(1):26–32
Publish date: 2017-03-21
KEYWORDS:
ABSTRACT:
The aim of the study was to evaluate the effect of sucrose, formic acid and lactic acid bacteria (LAB) inoculant on chemical composition and in vitro rumen digestibility of drooping wild ryegrass (Elymus nutans Griseb.) silage. Fresh drooping wild ryegrass was harvested at boot stage and ensiled with: 1. control (untreated), 2. 20 g · kg−1 sucrose (S), 3. 3 g · kg−1 formic acid (FA) and 4. 0.005 g · kg−1 commercial LAB inoculant (LP). The addition of all three additives increased the Flieg point, and decreased pH and butyric acid content (P < 0.05). There was lower ammonia N content in silages treated with S and FA. On the other hand, LP addition elevated lactic acid content with simultaneous increase of the lactic to acetic acid ratio (P < 0.001). The silages were further anaerobically incubated at 39 °C for 48 h with buffered rumen fluid of lactating cows. All three additives increased volatile fatty acid production (P = 0.008). Addition of LP increased average gas production rate and ammonia N content (P < 0.001). In brief, well fermented drooping wild ryegrass silages were obtained by adding LP or S in comparison to FA. LP can be recommended as a silage additive for preparing well fermented silage, and FA could be applied as a regulator additive to control the level of lactic acid produced during drooping wild ryegrass ensiling.
CORRESPONDING AUTHOR:
Z. Yu   
China Agricultural University, College of Animal Science and Technology, Institute of Grassland Science, Beijing100193, P.R. China
 
REFERENCES:
1. Amer S., Hassanat F., Berthiaume R., Seguin P., Mustafa A.F., 2012. Effects of water soluble carbohydrate content on ensiling characteristics, chemical composition and in vitro gas production of forage millet and forage sorghum silages. Anim. Feed Sci. Technol. 177, 23–29, http://dx.doi.org/10.1016/j.anifeedsci.2012.07.024
2. Bolsen K.K., Ashbell G., Weinberg Z.G., 1996. Silage fermentation and silage additives. Asian-Australas. J. Anim. Sci. 9, 483–494, https://doi.org/10.5713/ajas.1996.483
3. Broderick G.A., Kang J.H., 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63, 64–75, https://doi.org/10.3168/jds.S0022-0302(80)82888-8
4. Cao Y., Cai Y., Takahashi T., Yoshida N., Tohno M., Uegaki R., Nonaka K., Terada F., 2011. Effect of lactic acid bacteria inoculant and beet pulp addition on fermentation characteristics and in vitro ruminal digestion of vegetable residue silage. J. Dairy Sci. 94, 3902–3912, https://doi.org/10.3168/jds.2010-3623
5. Chen M.M., Liu Q.H., Xin G.R., Zhang J.G., 2013. Characteristics of lactic acid bacteria isolates and their inoculating effects on the silage fermentation at high temperature. Lett. Appl. Microbiol. 56, 71–78, https://doi.org/10.1111/lam.12018
6. Chen S.-Y., Ma X., Zhang X.-Q., Chen Z.-H., 2009. Genetic variation and geographical divergence in Elymus nutans Griseb. (Poaceae: Triticeae) from West China. Biochem. Syst. Ecol. 37, 716–722, https://doi.org/10.1016/j.bse.2009.12.005
7. Contreras-Govea F.E., Muck R.E., Broderick G.A., Weimer P.J., 2013. Lactobacillus plantarum effects on silage fermentation and in vitro microbial yield. Anim. Feed Sci. Technol. 179, 61–68, https://doi.org/10.1016/j.anifeedsci.2012.11.008
8. Denek N., Can A., Avci M., Aksu T., Durmaz H., 2011. The effect of molasses-based pre-fermented juice on the fermentation quality of first-cut lucerne silage. Grass Forage Sci. 66, 243–250, https://doi.org/10.1111/j.1365-2494.2011.00783.x
9. Fang J., Matsuzaki M., Suzuki H., Cai Y., Horiguchi K.I., Takahashi T., 2012. Effects of lactic acid bacteria and urea treatment on fermentation quality, digestibility and ruminal fermentation of roll bale rice straw silage in wethers. Grassl. Sci.58, 73–78, https://doi.org/10.1111/j.1744-697X.2012.00244.x
10. Filya I., Muck R.E., Contreras-Govea F.E., 2007. Inoculant effects on alfalfa silage: fermentation products and nutritive value. J. Dairy Sci. 90, 5108–5114, https://dx.doi.org/10.3168/jds2006-877
11. Fu J., Sun Y., Chu X., Xu Y., Hu T., 2014. Exogenous 5-aminolevulenic acid promotes seed germination in Elymus nutans against oxidative damage induced by cold stress. PLoS ONE 9, e107152, https://doi.org/10.1371/journal.pone.0107152
12. Guo G., Yuan X., Li L., Wen A., Shao T., 2014. Effects of fibrolytic enzymes, molasses and lactic acid bacteria on fermentation quality of mixed silage of corn and hulless-barely straw in the Tibetan Plateau. Grassl. Sci. 60, 240–246, https://doi.org/10.1111/grs.12060
13. Heinritz S.N., Martens S.D., Avila P., Hoedtke S., 2012. The effect of inoculant and sucrose addition on the silage quality of tropical forage legumes with varying ensilability. Anim. Feed Sci. Technol. 174, 201–210, https://doi.org/10.1016/j.anifeedsci.2012.03.017
14. Kozelov L.K., Iliev F., Hristov A.N., Zaman S., McAllister T.A., 2008. Effect of fibrolytic enzymes and an inoculant on in vitro degradability and gas production of low-dry matter alfalfa silage. J. Sci. Food Agric. 88, 2568–2575, https://doi.org/10.1002/jsfa.3393
15. Krishnamoorthy U., Soller H., Steingass H., Menke K.H., 1991. A comparative study on rumen fermentation of energy supplements in vitro. J. Anim. Physiol. Anim. Nutr. 65, 28–35, https://doi.org/10.1111/j.1439-0396.1991.tb00237.x
16. Lima R., Lourenço M., Díaza R.F., Castro A., Fievez V., 2010. Effect of combined ensiling of sorghum and soybean with or without molasses and lactobacilli on silage quality and in vitro rumen fermentation. Anim. Feed Sci. Technol. 155, 122–131, https://doi.org/10.1016/j.anifeedsci.2009.10.008
17. Lu B.R., 1993. Meiotic studies of Elymus nutans and E. jacquemontii (Poaceae,Triticeae) and their hybrids with Pseudoroegneria spicata and seventeen Elymus species. Plant Syst. Evol. 186, 193–212, https://doi.org/10.1007/BF00940798
18. McDonald P., Henderson A.R., Heron S.J.E., 1991. The Biochemistry of Silage. 2nd Edition. Chalcombe Publications. Marlow (UK)
19. McEniry J., King C., O’Kiely P., 2014. Silage fermentation characteristics of three common grassland species in response to advancing stage of maturity and additive application. Grass Forage Sci. 69, 393–404, https://doi.org/10.1111/gfs.12038
20. Menke K.H., Steingass H., 1988. Estimation of the energetic feed value obtained by chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7–55
21. Miao J., Zhang X., Che S., Ma X., Chen Z., Zhong J., Bai S., 2011. Gliadin analysis of Elymus nutans Griseb. from the Qinghai-Tibetan Plateau and Xinjiang, China. Grassl. Sci. 57, 127–134, https://doi.org/10.1111/j.1744-697X.2011.00219.x
22. Muck R.E., Filya I., Contreras-Govea F.E., 2007. Inoculant effects on alfalfa silage: in vitro gas and volatile fatty acid production. J. Dairy Sci. 90, 5115–5125, https://doi.org/10.3168/jds.2006-878
23. Nadeau E.M.G., Buxton D.R., Russell J.R., Allison M.J., Young J.W., 2000. Enzyme, bacterial inoculant, and formic acid effects on silage composition of orchardgrass and alfalfa. J. Dairy Sci. 83, 1487–1502, https://doi.org/10.3168/jds.S0022-0302(00)75021-1
24. Ohyama Y., Morichi T., Masaki S., 1975. The effect of inoculation with Lactobacillus plantarum and addition of glucose at ensiling on the quality of aerated silages. J. Sci. Food Agric. 26, 1001–1008, https://doi.org/10.1002/jsfa.2740260717
25. Reynal S.M., Ipharraguerre I.R., Liñeiro M., Brito A.F., Broderick G.A., Clark J.H., 2007. Omasal flow of soluble proteins, peptides, and free amino acids in dairy cows fed diets supplemented with proteins of varying ruminal degradabilities. J. Dairy Sci. 90, 1887–1903, https://doi.org/10.3168/jds.2006-158
26. Rymer C., Williams B.A., Brooks A.E., Davies D.R., Givens D.I., 2005. Inter-laboratory variation of in vitro cumulative gas production profiles of feeds using manual and automated methods. Anim. Feed Sci. Technol. 123–124, 225–241, https://doi.org/10.1016/j.anifeedsci.2005.04.029
27. Weinberg Z.G., Muck R.E., 1996. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol. Rev. 19, 53–68, https://doi.org/10.1111/j.1574-6976.1996.tb00253.x
28. Yang H.J., Zhuang H., Meng X.K., Zhang D.F., Cao B.H., 2014. Effect of melamine on in vitro rumen microbial growth, methane production and fermentation of Chinese wild rye hay and maize meal in binary mixtures. J. Agric. Sci. 152, 686–696, https://doi.org/10.1017/S0021859613000725
29. Zhang Q., Li X.J., Zhao M.M.,Yu Z., 2014a. Isolating and evaluating lactic acid bacteria strains for effectiveness of Leymus chinensis silage fermentation. Lett. Appl. Microbiol. 59, 391–397, https://doi.org/10.1111/lam.12291
30. Zhang X.Q., Jin Y.M., Zhang Y.J., Yu Z., Yan W.H., 2014b. Silage quality and preservation of Urtica cannabina ensiled alone and with additive treatment. Grass Forage Sci. 69, 405–414, https://doi.org/10.1111/gfs.12036
ISSN:1230-1388