ORIGINAL PAPER
 
KEYWORDS
TOPICS
poultry
 
ABSTRACT
The purpose of this study was to explore whether the addition of feeding superoxide dismutase (SOD) to yellow feather broilers in the early stages of growth could affect their growth performance, antioxidant properties, digestive enzyme activity and blood biochemical indices. A total of 320 male one-day-old yellow-feather broilers were evenly divided into 5 groups of 8 replicates each, with 8 chickens in each replicate. The control group was fed the basal diet, and four experimental groups were fed the basal diet + 100 mg/kg, 200 mg/kg, 400 mg/kg, and 800 mg/kg SOD, respectively. SOD was provided in powder form and the enzyme activity was 20 000 IU/g. Prefeeding the basal diet for three days was followed by feeding the experimental diet for the trial period of 28 days. The results indicated that SOD significantly increased final body weight and average daily gain (P < 0.05) and significantly decreased the feed:gain ratio (P < 0.05) of broilers without affecting average daily feed intake (P > 0.05). Dietary SOD increased total antioxidant capacity and glutathione peroxidase activity (GSH-Px) (P < 0.05), reduced serum malondialdehyde (P < 0.05) levels, and increased total SOD, catalase and GSH-Px P < 0.05) activities in the liver. The results demonstrated that dietary SOD supplementation improved the antioxidant capacity of broilers. However, SOD did not affect the activity of digestive enzymes (α-amylase, trypsin, lipase) in the duodenum, jejunum and ileum (P > 0.05). In addition, SOD reduced serum alanine transaminase and aspartate transaminase (P < 0.05) activity, indicating reduced burden on the liver. Based on these results, it can be concluded that the addition of different SOD concentrations to the diet can enhance the growth performance and antioxidant capacity of broilers. The addition of SOD provided the optimum effect in the range of 400–800 mg/kg.
FUNDING
This study was supported by Hunan Province double first-class construction project (kxk201801004).
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
METADATA IN OTHER LANGUAGES:
Chinese
饲粮中添加超氧化物歧化酶对黄羽肉仔鸡生长性能、抗氧 化能力和消化酶活性的影响
摘要:本研究旨在探讨在生长早期向黄羽肉鸡添加超氧化物歧化酶(SOD)是否会影响其生长性能、抗 氧化性能、消化酶活性和血液生化指标。将320只雄性1日龄黄羽肉鸡平均分为5组,每组8个重复,每个 重复8只鸡。对照组饲喂基础饲粮,四个不同的试验组分别饲喂基础饲粮+100 mg/kg、200 mg/kg、400 mg/kg 和800 mg/kg的SOD。SOD呈粉末状,酶活性为20 000 IU/g。预饲基础饲粮三天,然后饲喂试验饲粮,试验期 为28天。结果表明,SOD显着提高了肉鸡的终重和平均日增重(P < 0.05),显着降低了肉鸡的日增重比 (P < 0.05),而不影响平均日采食量(P > 0.05)。膳食SOD增加总抗氧化能力、谷胱甘肽过氧化物酶(GSH-Px) (P < 0.05),降低血清丙二醛(P < 0.05),增加肝脏总SOD、过氧化氢酶、GSH-Px(P < 0.05)。研究表 明,在饲粮中添加SOD可以提高肉鸡的抗氧化能力。但SOD不影响十二指肠、空肠和回肠消化酶(α-淀粉 酶、胰蛋白酶、脂肪酶)的活性(P > 0.05)。此外,SOD降低了血清中的丙氨酸转氨酶和天冬氨酸转氨酶 (P < 0.05),减轻了肝脏的负担。基于这些结果可以得出结论,在饲粮中添加不同浓度的SOD可以促进肉鸡 的生长性能和抗氧化能力。而SOD的添加量在400~800 mg/kg时效果最好。
 
REFERENCES (45)
1.
Ahasan A.S.M.L., Invernizzi G., Farina G. et al., 2018. The effects of superoxide dismutase-rich melon pulp concentrate on inflammation, antioxidant status and growth performance of challenged post-weaning piglets. Animal 13, 136–143, https://doi.org/10.1017/s17517...
 
2.
Azab A.E., Adwas A.A., Elsayed A.S.I, Quwaydir F.F., 2019. Oxidative stress and antioxidant mechanisms in human body. J. Appl. Biotechnol. Bioeng. 6, 43–47, https://doi.org/10.15406/jabb....
 
3.
Bafana A., Dutt S., Kumar S., Ahuja P.S., 2011. Superoxide dismutase: an industrial perspective. Crit Rev Biotechnol, 31, 65–76, https://doi.org/10.3109/073885...
 
4.
Black J.E., Sirevaag A.M., Wallace C.S., Savin M.H., Greenough W.T., 1989. Effects of complex experience on somatic growth and organ development in rats. Dev. Psychobiol. 22, 727–752, https://doi.org/10.1002/dev.42...
 
5.
Cao Y., Liu H., Qin N., Ren X., Zhu B., Xia X., 2020. Impact of food additives on the composition and function of gut microbiota: a review. Trends Food Sci. Technol. 99, 295–310, https://doi.org/10.1016/j.tifs...
 
6.
Celi P., Verlhac V., Pérez Calvo E., Schmeisser J., Kluenter A.M., 2019. Biomarkers of gastrointestinal functionality in animal nutrition and health. Anim Feed Sci Technol. 250, 9–31, https://doi.org/10.1016/j.anif...
 
7.
Chauhan S.S., Celi P., Ponnampalam E.N., Leury B.J., Liu F., Dunshea F.R., 2014. Antioxidant dynamics in the live animal and implications for ruminant health and product (meat/milk) quality: role of vitamin E and selenium. Anim. Prod. Sci. 54, 1525–1536, https://doi.org/10.1071/AN1433...
 
8.
Di Meo S., Venditti P., 2020. Evolution of the knowledge of free radicals and other oxidants. Oxid. Med. Cell. Longev. 3, 1–32, https://doi.org/10.1155/2020/9...
 
9.
Egea G., Jiménez-Altayó F., Campuzano V., 2020. Reactive oxygen species and oxidative stress in the pathogenesis and progression of genetic diseases of the connective tissue. Antioxidants 9, 1013, https://doi.org/10.3390/antiox...
 
10.
Frank L., Summerville J., Massaro D., 1980. Protection from oxygen toxicity with endotoxin: role of the endogenous antioxidant enzymes of the lung. J. Clin. Invest. 65, 1104–1110, https://doi.org/10.1172/JCI109...
 
11.
Geng A., Li B., Guo Y. 2007. Effects of dietary L-carnitine and coenzyme Q10at different supplemental ages on growth performance and some immune response in ascites-susceptible broilers. Arch. Anim. Nutr. 61, 50–60, https://doi.org/10.1080/174503...
 
12.
González-Ruiz R., Peregrino-Uriarte A.B., Valenzuela-Soto E.M., Cinco-Moroyoqui F.J., Martinez-Tellez M.A., Plascencia G.Y., 2021. Mitochondrial manganese superoxide dismutase knock-down increases oxidative stress and caspase-3 activity in the white shrimp Litopenaeus vannamei exposed to high temperature, hypoxia, and reoxygenation. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 252, 110826, https://doi.org/10.1016/j.cbpa...
 
13.
Gouda A., Amer S.A., Gabr S., Tolba S.A., 2020. Effect of dietary supplemental ascorbic acid and folic acid on the growth performance, redox status, and immune status of broiler chickens under heat stress. Trop. Anim. Health Prod. 52, 2987–2996, https://doi.org/10.1007/s11250...
 
14.
Ho Y.S., Xiong Y., Ma W., Spector A., Ho D.S., 2004. Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J. Biol. Chem. 279, 32804–32812, https://doi.org/10.1074/jbc.M4...
 
15.
Krishnamurthy P., Wadhwani A., 2012. Antioxidant enzymes and human health. In: M.A. El-Missiry (Editor). Antioxidant Enzyme. IntechOpen. London (UK), pp. 1–17, https://doi.org/10.5772/48109
 
16.
Le Couteur D.G., Blyth F.M., Creasey H.M., Handelsman D.J., Naganathan V., Sambrook P.N., Seibel M.J., Waite L.M., Cumming R.G., 2010. The association of alanine transaminase with aging, frailty, and mortality. J. Gerontol. A Biol. Sci. Med. Sci. 65, 712–717, https://doi.org/10.1093/gerona...
 
17.
Lu Z., Wen T., Wang Y., Kan W., Xun G., 2020. Peripheral non-enzymatic antioxidants in patients with schizophrenia: a case-control study. BMC Psychiatry 20, 1–9, https://doi.org/10.1186/s12888...
 
18.
Lund D.D., Chu Y., Miller J.D., Heistad D.D., 2009. Protective effect of extracellular superoxide dismutase on endothelial function during aging. Am. J. Physiol. Heart Circ. Physiol. 296, H1920–H1925, https://doi.org/10.1152/ajphea...
 
19.
Ma X., Deng D., Chen W., 2017. Inhibitors and activators of SOD, GSH-Px, and CAT. In: M. Senturk (Editor). Enzyme Inhibitors and Activators 29, 207–224, https://doi.org/10.5772/65936
 
20.
Marchesini G., Moscatiello S., Di Domizio S., Forlani G., 2008. Obesity-associated liver disease. J. Clin. Endocrinol. Metab. 93, s74–s80, https://doi.org/10.1210/jc.200...
 
21.
Mazukhina S.I., Chudnenko K.V., Tereshchenko P.S., Drogobuzhskaya S.V., Ivanov, S.V., 2020. Modeling: the new prospects of studying biological systems as illustrated by the human stomach. In: O.V. Frank-Kamenetskaya, D.Y. Vlasov, E.G. Panova, S.N. Lessovaia (Editors). Processes and phenomena on the boundary between biogenic and abiogenic nature. Springer Nature. Cham (Switzerland), pp. 863–877, https://doi.org/10.1007/978-3-...
 
22.
Miller J.K., Brzezinska-Slebodzinska E., Madsen F.C., 1993. Oxidative stress, antioxidants, and animal function. J. Dairy Sci. 76, 2812–2823, https://doi.org/10.3168/jds.S0...
 
23.
Mirończuk-Chodakowska I., Witkowska A.M., Zujko M.E., 2018. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci. 63, 68–78, https://doi.org/10.1016/j.advm...
 
24.
Mottet A., Tempio G., 2017. Global poultry production: current state and future outlook and challenges. Worlds Poult. Sci. J. 73, 245–256, https://doi.org/10.1017/S00439...
 
25.
Ndrepepa G., 2021. Aspartate aminotransferase and cardiovascular disease – a narrative review. J. Lab. Precis. Med. 6, 8725, https://doi.org/10.21037/jlpm-...
 
26.
Nozik-Grayck E., Suliman H.B., Piantadosi C.A., 2005. Extracellular superoxide dismutase. Int. J. Biochem. Cell Biol. 37, 2466–2471, https://doi.org/10.1016/j.bioc...
 
27.
Pearlin B.V., Muthuvel S., Govidasamy P., Villavan M., Alagawany M., Ragab Farag M., Dhama K., Gopi M., 2020. Role of acidifiers in livestock nutrition and health: a review. J Anim. Physiol. Anim. Nutr. 104, 558–569, https://doi.org/10.1111/jpn.13...
 
28.
Pederzolli C.D., Sgaravatti Â.M., Braum C.A., Prestes C.C., Zorzi G.K., Sgarbi M.B., Wyse A.T.S., Wannmacher C.M.D., Wajner M., Dutra-Filho C.S., 2007. 5-Oxoproline reduces non-enzymatic antioxidant defenses in vitro in rat brain. Metab. Brain Dis. 22, 51–65, https://doi.org/10.1007/s11011...
 
29.
Pekarthy J.M., Short J., Lansing A.I., Lieberman I., 1972. Function and control of liver alkaline phosphatase. J. Biol. Chem. 247, 1767–1774, https://doi.org/10.1016/S0021-...
 
30.
Poljsak B., Šuput D., Milisav, I., 2013. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. When to use the synthetic antioxidants. Oxid. Med. Cell. Longev. 2013, 956792, https://doi.org/10.1155/2013/9...
 
31.
Qi D., Shi W., Black A.R., Kuss M.A., Pang X., He Y., Duan B., 2020. Repair and regeneration of small intestine: A review of current engineering approaches. Biomaterials 240, 119832, https://doi.org/10.1016/j.biom...
 
32.
Ratzke C., Gore J., 2018. Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol, 16, e2004248, https://doi.org/10.1371/journa...
 
33.
Rønnestad I., Morais, S., 2020. Digestion. In: R.N. Finn, B.G. Kapoor (Editors) Fish larval physiology. CRC Press. Boca Raton, FL (USA), pp. 201-262
 
34.
Shakeri M., Cottrell J.J., Wilkinson S., Le H.H., Suleria H. A., Warner R. D., Dunshea F.R., 2019. Growth performance and characterization of meat quality of broiler chickens supplemented with betaine and antioxidants under cyclic heat stress. Antioxidants 8, 336, https://doi.org/10.3390/antiox...
 
35.
Simitzis P.E., Kalogeraki E., Goliomytis M., Charismiadou M.A., Triantaphyllopoulos K., Ayoutanti A., Hager-Theodorides A.L., Deligeorgis S.G., 2012. Impact of stocking density on broiler growth performance, meat characteristics, behavioural components and indicators of physiological and oxidative stress. Br. Poult. Sci. 53, 721–730, https://doi.org/10.1080/000716...
 
36.
Sîrbu O., Floria M., Dăscălița P., Şorodoc V., Şorodoc L., 2016. Non-alcoholic fatty liver disease-from the cardiologist perspective. Anatol. J. Cardiol. 16, 534, https://doi.org/10.14744/Anato...
 
37.
Surai P.F., Kochish I.I., Fisinin V.I., Kidd M.T., 2019a. Antioxidant defence systems and oxidative stress in poultry biology: an update. Antioxidants 8, 235, https://doi.org/10.3390/antiox...
 
38.
Surai P.F., Kochish I.I., Romanov M.N., Griffin D.K., 2019b. Nutritional modulation of the antioxidant capacities in poultry: the case of vitamin E. Poult. Sci. 98, 4030–4041, https://doi.org/10.3382/ps/pez...
 
39.
Whitcomb D.C., Lowe M.E., 2007. Human pancreatic digestive enzymes. Dig. Dis. Sci. 52, 1–17, https://doi.org/10.1007/s10620...
 
40.
Wu Y., Chen H.D., Li Y.H., Gao X.H., Preedy V.R., 2012. Antioxidants and skin: an overview. In: V.R. Preedy (Editor). Handbook of diet, nutrition and the skin. Wegeningen Academic Publishers. Wegeningen (Netherlands), pp. 68–90, https://doi.org/10.3920/978-90...
 
41.
Yan Z., Zhong Y., Duan Y., Chen Q., Li, F., 2020. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 6, 115–123, https://doi.org/10.1016/j.anin...
 
42.
Yesilbag D., Eren M., Agel H., Kovanlikaya A., Balci F., 2011. Effects of dietary rosemary, rosemary volatile oil and vitamin E on broiler performance, meat quality and serum SOD activity. Br. Poult. Sci. 52, 472–482, https://doi.org/10.1080/000716...
 
43.
Younus H., 2018. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. 12, 88–93
 
44.
Zhang Q., Li F., Wang B., Zhang J., Liu Y., Zhou Q., Xiang J., 2007. The mitochondrial manganese superoxide dismutase gene in Chinese shrimp Fenneropenaeus chinensis: cloning, distribution and expression. Dev. Comp. Immunol. 31, 429–440, https://doi.org/10.1016/j.dci....
 
45.
Zhang Q., Zhang S., Cong G., Zhang Y., Madsen M.H., Tan B., Shi S., 2021. Effects of soy protein concentrate in starter phase diet on growth performance, blood biochemical indices, carcass traits, immune organ indices and meat quality of broilers. Animals 11, 281, https://doi.org/10.3390/ani110...
 
 
CITATIONS (1):
1.
Organic and Inorganic Selenium Compounds Affected Lipidomic Profile of Spleen of Lambs Fed with Diets Enriched in Carnosic Acid and Fish Oil
Małgorzata Białek, Agnieszka Białek, Wiktoria Wojtak, Marian Czauderna
Animals
 
ISSN:1230-1388
Journals System - logo
Scroll to top