Effects of cinnamaldehyde and thymol on cytotoxicity, tight junction barrier resistance, and cyclooxygenase-1 and -2 expression in Caco-2 cells
More details
Hide details
DuPont Nutrition and Health, Global Health and Nutrition Science, 02460 Kantvik, Finland
Publication date: 2017-09-21
Corresponding author
H. Putaala   

DuPont Nutrition and Health, Global Health and Nutrition Science, 02460 Kantvik, Finland
J. Anim. Feed Sci. 2017;26(3):274-284
Cinnamaldehyde and thymol are essential oils that are used as alternatives to antimicrobials in animal feed. The aim of the study was to examine the effects of cinnamaldehyde and thymol separately and in combination at amounts used in animal feed (5 mg · kg−1 cinnamaldehyde and 15 mg · kg−1 thymol) on cell membrane permeability, cell proliferation, tight junction integrity and cyclooxygenase-1 and -2 (COX1 and COX2, respectively) gene expression in the Caco-2 line, an intestinal epithelial cell model. Individually, thymol and cinnamaldehyde at below 50 mg · l−1 or 100 mg · l−1 in cell culture medium exerted negligible effects on cell membrane permeabilization and proliferation. Thymol increased tight junction integrity by max. 61.7 ± 5.4% at 100 mg · ml−1, whereas cinnamaldehyde weakened it by max. 76.8 ± 0.3% at 100 mg · l−1. However, when the essential oils were combined together, tight junction integrity rose by 49.7 ± 4.4%, and no weakening effect of cinnamaldehyde was evident. Thymol up-regulated COX1 transcription and increased the COX1:COX2 ratio, which has been suggested to be beneficial for intestinal health. Treatment with combined essential oils for 48 h altered 33 genes expression by microarray analysis, with no enrichment in any gene ontology class. The combination of cinnamaldehyde and thymol did not affect membrane permeability or cell proliferation in intestinal epithelial cells. In contrast, it had beneficial effects on tight junction integrity. Thus, the combination of such essential oils as cinnamaldehyde and thymol at the amounts that are used in feed is not cytotoxic to Caco-2 cells, an intestinal epithelial cell model.
Amerah A.M., Ouwehand A.C., 2016. Use of essential oils in poultry production. In: V.R. Preedy (Editor). Essential Oils in Food Preservation, Flavor and Safety. Academic Press. San Diego, CA (USA), pp. 101–110, https://doi.org/10.1016/B978-0....
Bakkali F., Averbeck S., Averbeck D., Idaomar M., 2008. Biological effects of essential oils – a review. Food Chem. Toxicol. 46, 446–475, https://doi.org/10.1016/j.fct.....
Boswell T., Dunn I.C., 2015. Regulation of the avian central melanocortin system and the role of leptin. Gen. Comp. Endocrinol. 221, 278–283, https://doi.org/10.1016/j.ygce....
Bouayed J., Bohn T., 2010. Exogenous antioxidants – double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Med. Cell. Longev. 3, 228–237, https://doi.org/10.4161/oxim.3....
Boudry G., Perrier C., 2008. Thyme and cinnamon extracts induce anion secretion in piglet small intestine via cholinergic pathways. J. Physiol. Pharmacol. 59, 543–552.
Braga P.C., Dal Sasso M., Culici M., Galastri L., Marceca M.T., Guffanti E.E., 2006. Antioxidant potential of thymol determined by chemiluminescence inhibition in human neutrophils and cell-free systems. Pharmacology 76, 61–68, https://doi.org/10.1159/000089....
Burdan F., Szumiło J., Gajjar B., Dudka J., Korobowicz A., Patel S., Nat A., Nat A.S., Dworzański W., Kwaśniewski W., 2008. Immunoexpression of constitutive and inducible cyclo-oxygenase isoforms in the rat foetal and maternal digestive tract. Folia Morphol. 67, 24–31.
Chao L.K., Hua K.-F., Hsu H.-Y., Cheng S.-S., Lin I-F., Chen C.-J., Chen S.-T., Chang S.-T., 2008. Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling, Food Chem. Toxicol. 46, 220–231, https://doi.org/10.1016/j.fct.....
Fothergill L.J., Callaghan B., Rivera L.R., Lieu T.M., Poole D.P., Cho H.-J., Bravo D.M., Furness J.B., 2016. Effects of food components that activate TRPA1 receptors on mucosal ion transport in the mouse intestine. Nutrients 8, 623, https://doi.org/10.3390/nu8100....
Huang T.-C., Chung Y.-L., Wu M.-L., Chuang S.-M., 2011. Cinnamaldehyde enhances Nrf2 nuclear translocation to upregulate phase II detoxifying enzyme expression in HepG2 cells. J. Agric. Food Chem. 59, 5164–5171, https://doi.org/10.1021/jf2005....
Hughes P., Marshall D., Reid Y., Parkes H., Gelber C., 2007. The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? BioTechniques 43, 575–586, https://doi.org/10.2144/000112....
Józefiak D., Rutkowski A., Martin S.A., 2004. Carbohydrate fermentation in the avian ceca: a review. Anim. Feed Sci. Technol. 113, 1–15, https://doi.org/10.1016/j.anif....
Kaji I., Karaki S.-i., Kuwahara A., 2011. Effects of luminal thymol on epithelial transport in human and rat colon. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G1132–G1143, https://doi.org/10.1152/ajpgi.....
Khare P., Jagtap S., Jain Y. et al., 2016. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice. BioFactors 42, 201–211, http://onlinelibrary.wiley.com....
Kohlert C., Schindler G., März R.W., Abel G., Brinkhaus B., Derendorf H., Gräfe E.-U., Veit M., 2002. Systemic availability and pharmacokinetics of thymol in humans. J. Clin. Pharmacol. 42, 731–737, https://doi.org/10.1177/009127....
Llana-Ruiz-Cabello M., Gutiérrez-Praena D., Pichardo S., Moreno F.J., Bermúdez J.M., Aucejo S., Cameán A.M., 2014. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2. Food Chem. Toxicol. 64, 281–290, https://doi.org/10.1016/j.fct.....
Llana-Ruiz-Cabello M., Gutiérrez-Praena D., Puerto M., Pichardo S., Jos Á., Cameán A.M., 2015. In vitro pro-oxidant/antioxidant role of carvacrol, thymol and their mixture in the intestinal Caco-2 cell line. Toxicol. Vitro 29, 647–656, https://doi.org/10.1016/j.tiv.....
Marsik P., Kokoska L., Landa P., Nepovim A., Soudek P., Vanek T., 2005. In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1- and -2-catalyzed prostaglandin E2 biosyntheses. Planta Med. 71, 739–742, https://doi.org/10.1055/s-2005....
Matsui H., Shimokawa O., Kaneko T., Nagano Y., Rai K., Hyodo I., 2011. The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine. J. Clin. Biochem. Nutr. 48, 107–111, https://doi.org/10.3164/jcbn.1....
Michiels J., Missotten J., Dierick N., Fremaut D., De Smet S., 2010. Thymol and trans-cinnamaldehyde reduce active nutrient absorption and chloride secretion in the pig jejunal Ussing chamber model. Livest. Sci. 134, 27–29, https://doi.org/10.1016/j.livs....
Nozawa K., Kawabata-Shoda E., Doihara H. et al., 2009. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc. Natl. Acad. Sci. USA. 106, 3408–3413, https://doi.org/10.1073/pnas.0....
Ouwehand A., Tiihonen K., Kettunen H., Peuranen S., Schulze H., Rautonen N., 2010. In vitro effects of essential oils on potential pathogens and beneficial members of the normal microbiota. Vet. Med. 55, 71–78.
Putaala H., Barrangou R., Leyer G.J., Ouwehand A.C., Bech Hansen E., Romero D.A., Rautonen N., 2010. Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli. Benef. Microbes 1, 283–295, https://doi.org/10.3920/BM2010....
Putaala H., Salusjärvi T., Nordström M., Saarinen M., Ouwehand A.C., Bech Hansen E., Rautonen N., 2008. Effect of four probiotic strains and Escherichia coli O157:H7 on tight junction integrity and cyclo-oxygenase expression. Res. Microbiol. 159, 692–698, https://doi.org/10.1016/j.resm....
Reichling J., Schnitzler P., Suschke U., Saller R., 2009. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties – an overview. Forsch. Komplementmed. 16, 79–90, https://doi.org/10.1159/000207....
Simmons D.L., Botting R.M., Hla T., 2004. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 56, 387–437, https://doi.org/10.1124/pr.56.....
Tiihonen K., Kettunen H., Bento M.H., Saarinen M., Lahtinen S., Ouwehand A.C., Schulze H., Rautonen N., 2010. The effect of feeding essential oils on broiler performance and gut microbiota. Br. Poult. Sci. 51, 381–392, https://doi.org/10.1080/2010.4....
Ulluwishewa D., Anderson R.C., McNabb W.C., Moughan P.J., Wells J.M., Roy N.C., 2011. Regulation of tight junction permeability by intestinal bacteria and dietary components. J. Nutr. 141, 769–776, https://doi.org/10.3945/jn.110....
Veeriah S., Hofmann T., Glei M., Dietrich H., Will F., Schreier P., Knaup B., Pool-Zobel B.L., 2007. Apple polyphenols and products formed in the gut differently inhibit survival of human cell lines derived from colon adenoma (LT97) and carcinoma (HT29). J. Agric. Food Chem. 55, 2892–2900, https://doi.org/10.1021/jf0633....
Youn H.S., Lee J.K., Choi Y.J., Saitoh S.I., Miyake K., Hwang D.H., Lee J.Y., 2008. Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochem. Pharmacol. 75, 494–502, https://doi.org/10.1016/j.bcp.....
Yuan J.H., Dieter M.P., Bucher J.R., Jameson C.W., 1992. Toxicokinetics of cinnamaldehyde in F344 rats. Food Chem. Toxicol. 30, 997–1004, https://doi.org/10.1016/0278-6....
Influence of phytogenics on recovery of the barrier function of intestinal porcine epithelial cells after a calcium switch
Diana Bachinger, Elisabeth Mayer, Theresa Kaschubek, Carina Schieder, Jürgen König, Klaus Teichmann
Journal of Animal Physiology and Animal Nutrition
Thymol Improves Barrier Function and Attenuates Inflammatory Responses in Porcine Intestinal Epithelial Cells during Lipopolysaccharide (LPS)-Induced Inflammation
Faith A. Omonijo, Shangxi Liu, Qianru Hui, Hua Zhang, Ludovic Lahaye, Jean-Christophe Bodin, Joshua Gong, Martin Nyachoti, Chengbo Yang
Journal of Agricultural and Food Chemistry
Ingestion of organic acids and cinnamaldehyde improves tissue homeostasis of piglets exposed to enterotoxic Escherichia coli (ETEC)
Milton Jiménez, Roger Berrios, Sabine Stelzhammer, Ana Bracarense
Journal of Animal Science
Effects of Thymol and Thymol α-D-Glucopyranoside on Intestinal Function and Microbiota of Weaned Pigs
Noten Van, Jeroen Degroote, Liefferinge Van, Bernard Taminiau, Smet De, Tom Desmet, Joris Michiels
Non-electrophilic TRPA1 agonists, menthol, carvacrol and clotrimazole, open epithelial tight junctions via TRPA1 activation
Minagi Mukaiyama, Takeo Usui, Yoko Nagumo
The Journal of Biochemistry
In vitro Assessment of Antiviral Effect of Natural Compounds on Porcine Epidemic Diarrhea Coronavirus
Manuel Gómez-García, Héctor Puente, Héctor Argüello, Óscar Mencía-Ares, Pedro Rubio, Ana Carvajal
Frontiers in Veterinary Science
Low energy nanoemulsions as carriers of thyme and lemon balm essential oils
Cátia Sampaio, Ana Bourbon, Catarina Gonçalves, Lorenzo Pastrana, Alice Dias, Miguel Cerqueira
Protective Effects of Natural Antioxidants on Inflammatory Bowel Disease: Thymol and Its Pharmacological Properties
Yao Liu, Hui Yan, Bing Yu, Jun He, Xiangbing Mao, Jie Yu, Ping Zheng, Zhiqing Huang, Yuheng Luo, Junqiu Luo, Aimin Wu, Daiwen Chen
Beneficial Effects of Phytogenic Feed Additives on Epithelial Barrier Integrity in an In Vitro Co-Culture Model of the Piglet Gut
Dominik Wendner, Theresa Schott, Elisabeth Mayer, Klaus Teichmann
Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease
Dipak Sahoo, Romy Heilmann, Biswaranjan Paital, Ashish Patel, Virendra Yadav, David Wong, Albert Jergens
Frontiers in Endocrinology
Journals System - logo
Scroll to top