0.917
IF5
1.024
IF
Q2
JCR
0.90
CiteScore
0.385
SJR
Q2
SJR
20
MNiSW
142.18
ICV
ORIGINAL PAPER
 
CC-BY 4.0
 
 

Effects of cinnamaldehyde and thymol on cytotoxicity, tight junction barrier resistance, and cyclooxygenase-1 and -2 expression in Caco-2 cells

H. Putaala 1  ,  
P. Nurminen 1,  
 
1
DuPont Nutrition and Health, Global Health and Nutrition Science, 02460 Kantvik, Finland
J. Anim. Feed Sci. 2017;26(3):274–284
Publish date: 2017-09-21
KEYWORDS:
ABSTRACT:
Cinnamaldehyde and thymol are essential oils that are used as alternatives to antimicrobials in animal feed. The aim of the study was to examine the effects of cinnamaldehyde and thymol separately and in combination at amounts used in animal feed (5 mg · kg−1 cinnamaldehyde and 15 mg · kg−1 thymol) on cell membrane permeability, cell proliferation, tight junction integrity and cyclooxygenase-1 and -2 (COX1 and COX2, respectively) gene expression in the Caco-2 line, an intestinal epithelial cell model. Individually, thymol and cinnamaldehyde at below 50 mg · l−1 or 100 mg · l−1 in cell culture medium exerted negligible effects on cell membrane permeabilization and proliferation. Thymol increased tight junction integrity by max. 61.7 ± 5.4% at 100 mg · ml−1, whereas cinnamaldehyde weakened it by max. 76.8 ± 0.3% at 100 mg · l−1. However, when the essential oils were combined together, tight junction integrity rose by 49.7 ± 4.4%, and no weakening effect of cinnamaldehyde was evident. Thymol up-regulated COX1 transcription and increased the COX1:COX2 ratio, which has been suggested to be beneficial for intestinal health. Treatment with combined essential oils for 48 h altered 33 genes expression by microarray analysis, with no enrichment in any gene ontology class. The combination of cinnamaldehyde and thymol did not affect membrane permeability or cell proliferation in intestinal epithelial cells. In contrast, it had beneficial effects on tight junction integrity. Thus, the combination of such essential oils as cinnamaldehyde and thymol at the amounts that are used in feed is not cytotoxic to Caco-2 cells, an intestinal epithelial cell model.
CORRESPONDING AUTHOR:
H. Putaala   
DuPont Nutrition and Health, Global Health and Nutrition Science, 02460 Kantvik, Finland
 
REFERENCES:
1. Amerah A.M., Ouwehand A.C., 2016. Use of essential oils in poultry production. In: V.R. Preedy (Editor). Essential Oils in Food Preservation, Flavor and Safety. Academic Press. San Diego, CA (USA), pp. 101–110, https://doi.org/10.1016/B978-0-12-416641-7.00010-9.
2. Bakkali F., Averbeck S., Averbeck D., Idaomar M., 2008. Biological effects of essential oils – a review. Food Chem. Toxicol. 46, 446–475, https://doi.org/10.1016/j.fct.2007.09.106.
3. Boswell T., Dunn I.C., 2015. Regulation of the avian central melanocortin system and the role of leptin. Gen. Comp. Endocrinol. 221, 278–283, https://doi.org/10.1016/j.ygcen.2014.12.009.
4. Bouayed J., Bohn T., 2010. Exogenous antioxidants – double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Med. Cell. Longev. 3, 228–237, https://doi.org/10.4161/oxim.3.4.12858.
5. Boudry G., Perrier C., 2008. Thyme and cinnamon extracts induce anion secretion in piglet small intestine via cholinergic pathways. J. Physiol. Pharmacol. 59, 543–552.
6. Braga P.C., Dal Sasso M., Culici M., Galastri L., Marceca M.T., Guffanti E.E., 2006. Antioxidant potential of thymol determined by chemiluminescence inhibition in human neutrophils and cell-free systems. Pharmacology 76, 61–68, https://doi.org/10.1159/000089719.
7. Burdan F., Szumiło J., Gajjar B., Dudka J., Korobowicz A., Patel S., Nat A., Nat A.S., Dworzański W., Kwaśniewski W., 2008. Immunoexpression of constitutive and inducible cyclo-oxygenase isoforms in the rat foetal and maternal digestive tract. Folia Morphol. 67, 24–31.
8. Chao L.K., Hua K.-F., Hsu H.-Y., Cheng S.-S., Lin I-F., Chen C.-J., Chen S.-T., Chang S.-T., 2008. Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling, Food Chem. Toxicol. 46, 220–231, https://doi.org/10.1016/j.fct.2007.07.016.
9. Fothergill L.J., Callaghan B., Rivera L.R., Lieu T.M., Poole D.P., Cho H.-J., Bravo D.M., Furness J.B., 2016. Effects of food components that activate TRPA1 receptors on mucosal ion transport in the mouse intestine. Nutrients 8, 623, https://doi.org/10.3390/nu8100623.
10. Huang T.-C., Chung Y.-L., Wu M.-L., Chuang S.-M., 2011. Cinnamaldehyde enhances Nrf2 nuclear translocation to upregulate phase II detoxifying enzyme expression in HepG2 cells. J. Agric. Food Chem. 59, 5164–5171, https://doi.org/10.1021/jf200579h.
11. Hughes P., Marshall D., Reid Y., Parkes H., Gelber C., 2007. The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? BioTechniques 43, 575–586, https://doi.org/10.2144/000112598.
12. Józefiak D., Rutkowski A., Martin S.A., 2004. Carbohydrate fermentation in the avian ceca: a review. Anim. Feed Sci. Technol. 113, 1–15, https://doi.org/10.1016/j.anifeedsci.2003.09.007.
13. Kaji I., Karaki S.-i., Kuwahara A., 2011. Effects of luminal thymol on epithelial transport in human and rat colon. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G1132–G1143, https://doi.org/10.1152/ajpgi.00503.2010.
14. Khare P., Jagtap S., Jain Y. et al., 2016. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice. BioFactors 42, 201–211, http://onlinelibrary.wiley.com/doi/10.1002/biof.1265/full.
15. Kohlert C., Schindler G., März R.W., Abel G., Brinkhaus B., Derendorf H., Gräfe E.-U., Veit M., 2002. Systemic availability and pharmacokinetics of thymol in humans. J. Clin. Pharmacol. 42, 731–737, https://doi.org/10.1177/009127002401102678.
16. Llana-Ruiz-Cabello M., Gutiérrez-Praena D., Pichardo S., Moreno F.J., Bermúdez J.M., Aucejo S., Cameán A.M., 2014. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2. Food Chem. Toxicol. 64, 281–290, https://doi.org/10.1016/j.fct.2013.12.005.
17. Llana-Ruiz-Cabello M., Gutiérrez-Praena D., Puerto M., Pichardo S., Jos Á., Cameán A.M., 2015. In vitro pro-oxidant/antioxidant role of carvacrol, thymol and their mixture in the intestinal Caco-2 cell line. Toxicol. Vitro 29, 647–656, https://doi.org/10.1016/j.tiv.2015.02.006.
18. Marsik P., Kokoska L., Landa P., Nepovim A., Soudek P., Vanek T., 2005. In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1- and -2-catalyzed prostaglandin E2 biosyntheses. Planta Med. 71, 739–742, https://doi.org/10.1055/s-2005-871288.
19. Matsui H., Shimokawa O., Kaneko T., Nagano Y., Rai K., Hyodo I., 2011. The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine. J. Clin. Biochem. Nutr. 48, 107–111, https://doi.org/10.3164/jcbn.10-79.
20. Michiels J., Missotten J., Dierick N., Fremaut D., De Smet S., 2010. Thymol and trans-cinnamaldehyde reduce active nutrient absorption and chloride secretion in the pig jejunal Ussing chamber model. Livest. Sci. 134, 27–29, https://doi.org/10.1016/j.livsci.2010.06.087.
21. Nozawa K., Kawabata-Shoda E., Doihara H. et al., 2009. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc. Natl. Acad. Sci. USA. 106, 3408–3413, https://doi.org/10.1073/pnas.0805323106.
22. Ouwehand A., Tiihonen K., Kettunen H., Peuranen S., Schulze H., Rautonen N., 2010. In vitro effects of essential oils on potential pathogens and beneficial members of the normal microbiota. Vet. Med. 55, 71–78.
23. Putaala H., Barrangou R., Leyer G.J., Ouwehand A.C., Bech Hansen E., Romero D.A., Rautonen N., 2010. Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli. Benef. Microbes 1, 283–295, https://doi.org/10.3920/BM2010.0003.
24. Putaala H., Salusjärvi T., Nordström M., Saarinen M., Ouwehand A.C., Bech Hansen E., Rautonen N., 2008. Effect of four probiotic strains and Escherichia coli O157:H7 on tight junction integrity and cyclo-oxygenase expression. Res. Microbiol. 159, 692–698, https://doi.org/10.1016/j.resmic.2008.08.002.
25. Reichling J., Schnitzler P., Suschke U., Saller R., 2009. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties – an overview. Forsch. Komplementmed. 16, 79–90, https://doi.org/10.1159/000207196.
26. Simmons D.L., Botting R.M., Hla T., 2004. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 56, 387–437, https://doi.org/10.1124/pr.56.3.3.
27. Tiihonen K., Kettunen H., Bento M.H., Saarinen M., Lahtinen S., Ouwehand A.C., Schulze H., Rautonen N., 2010. The effect of feeding essential oils on broiler performance and gut microbiota. Br. Poult. Sci. 51, 381–392, https://doi.org/10.1080/2010.496446.
28. Ulluwishewa D., Anderson R.C., McNabb W.C., Moughan P.J., Wells J.M., Roy N.C., 2011. Regulation of tight junction permeability by intestinal bacteria and dietary components. J. Nutr. 141, 769–776, https://doi.org/10.3945/jn.110.135657.
29. Veeriah S., Hofmann T., Glei M., Dietrich H., Will F., Schreier P., Knaup B., Pool-Zobel B.L., 2007. Apple polyphenols and products formed in the gut differently inhibit survival of human cell lines derived from colon adenoma (LT97) and carcinoma (HT29). J. Agric. Food Chem. 55, 2892–2900, https://doi.org/10.1021/jf063386r.
30. Youn H.S., Lee J.K., Choi Y.J., Saitoh S.I., Miyake K., Hwang D.H., Lee J.Y., 2008. Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochem. Pharmacol. 75, 494–502, https://doi.org/10.1016/j.bcp.2007.08.033.
31. Yuan J.H., Dieter M.P., Bucher J.R., Jameson C.W., 1992. Toxicokinetics of cinnamaldehyde in F344 rats. Food Chem. Toxicol. 30, 997–1004, https://doi.org/10.1016/0278-6915(92)90109-X.
ISSN:1230-1388