Effect of an essential oils blend on growth performance, and selected parameters of oxidative stress and antioxidant defence of Escherichia coli challenged piglets
More details
Hide details
Università degli Studi di Milano, Department of Health, Animal Science and Food Safety, 20133 Milan, Italy
Chinese Academy of Agricultural Sciences, Feed Research Institute, 100081 Beijing, China
Danisco Animal Nutrition, Dupont Industrial Biosciences, SN8 1XN Marlborough, United Kingdom
Publication date: 2017-03-21
Corresponding author
X.R. Jiang   

Chinese Academy of Agricultural Sciences, Feed Research Institute, 100081 Beijing, China
V. Bontempo   

Università degli Studi di Milano, Department of Health, Animal Science and Food Safety, 20133 Milan, Italy
J. Anim. Feed Sci. 2017;26(1):38-43
This study evaluated the effect of diet supplementation with an essential oil blend (13.5% thymol and 4.5% cinnamaldehyde, EO) on growth performance and selected parameters of oxidative stress and antioxidant defence in Escherichia coli challenged piglets. Ninety-six weaned piglets were allocated into 4 experimental treatments (6 replicates per treatment with 4 piglets per replicate) for 35 days arranged in a 2×2 factorial design: diet [a basal diet without additive (CT) or with 50 mg · kg−1 EO] and E. coli challenge [sham (−) or infected (+)]. On day 8, half of the piglets from each dietary group was orally inoculated with 4 ml of E. coli O149:F4 (K88). The E. coli challenge increased the level of malondialdehyde (MDA) in piglet serum on day 9 (P < 0.01), and tended to reduce average daily gain (P = 0.08) and average daily feed intake (P = 0.08) from day 7 to day 35. Dietary EO addition did not affect growth performance but tended to reduce MDA content in piglet serum in comparison with CT group on day 9 (P = 0.07). Neither EO addition nor E. coli challenge influenced antioxidative enzymes (superoxide dismutase and glutathione peroxidase) activity. The obtained results suggest that EO rich in thymol and cinnamaldehyde had tendency to reduce serum lipid peroxidation level by EO addition, however no such effect was observed in piglets challenged by E. coli. So, further studies are needed to confirm the EO influence on systemic antioxidant defence of weaned piglets.
Amorati R., Foti M.C., Valgimigli L., 2013. Antioxidant activity of essential oils. J. Agric. Food Chem. 61, 10835–10847, https://doi.org/10.1021/jf4034...
Bontempo V., Jiang X.R., Cheli F., Lo Verso L., Mantovani G., Vitari F., Domeneghini C., Agazzi A., 2014. Administration of a novel plant extract product via drinking water to post-weaning piglets: effects on performance and gut health. Animal 8, 721–730, https://doi.org/10.1017/S17517...
Bosi P., Casini L., Finamore A., Cremokolini C., Merialdi G., Trevisi P., Nobili F., Mengheri E., 2004. Spray-dried plasma improves growth performance and reduces inflammatory status of weaned pigs challenged with enterotoxigenic Escherichia coli K88. J. Anim. Sci. 82, 1764–1772, https://doi.org/10.2527/2004.8...
Boudry G., Perrier C., 2008. Thyme and cinnamon extracts induce anion secretion in piglet small intestine via cholinergic pathways. J. Physiol. Pharmacol. 59, 545–552
Efe H., Değer O., Kirci D., Karahan S.C., Örem A., Calapoğlu M., 1999. Decreased neutrophil antioxidative enzyme activities and increased lipid peroxidation in hyperlipoproteinemic human subjects. Clin. Chim. Acta 279, 155–165, https://doi.org/10.1016/S0009-...
Fairbrother J.M., Nadeau E., Gyles C.L., 2005. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 6, 17–39, https://doi.org/10.1079/AHR200...
Francis D.H., 2002. Enterotoxigenic Escherichia coli infection in pigs and its diagnosis. J. Swine Health Prod. 10, 171–175
Han J., Shuvaev V.V., Muzykantov V.R., 2011. Catalase and superoxide dismutase conjugated with platelet endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor. J. Pharmacol. Exp. Ther. 338, 82–91, https://doi.org/10.1124/jpet.1...
Jaeschke H., 1995. Mechanisms of oxidant stress-induced acute tissue injury. Exp. Biol. Med. 209, 104–111, https://doi.org/10.3181/003797...
Jiang X.R., Agazzi A., Awati A., Vitari F., Bento H., Ferrari A., Alborali G.L., Crestani M., Domeneghini C., Bontempo V., 2015a. Influence of a blend of essential oils and an enzyme combination on growth performance, microbial counts, ileum microscopic anatomy and the expression of inflammatory mediators in weaned piglets following an Escherichia coli infection. Anim. Feed Sci. Technol. 209, 219–229, https://doi.org/10.1016/j.anif...
Jiang X.R., Awati A., Agazzi A., Vitari F., Ferrari A., Bento H., Crestani M., Domeneghini C., Bontempo V., 2015b. Effects of a blend of essential oils and an enzyme combination on nutrient digestibility, ileum histology and expression of inflammatory mediators in weaned piglets. Animal 9, 417–426, https://doi.org/10.1017/S17517...
Jiang X.R., Zhang H.J., Mantovani G., Alborali G.L., Caputo J.M., Savoini G., Dell’Orto V., Bontempo V., 2014. The effect of plant polyphenols on the antioxidant defence system of weaned piglets subjected to an Escherichia coli challenge. J. Anim. Feed Sci. 23, 324–330, https://doi.org/10.22358/jafs/...
Lagouri V., Blekas G., Tsimidou M., Kokkini S., Boskou D., 1993. Composition and antioxidant activity of essential oils from Oregano plants grown wild in Greece. Z. Lebensm. Unters. Forsch. 197, 20–23, https://doi.org/10.1007/BF0120...
Liu Y., Song M., Che T.M., Almeida J.A.S., Lee J.J., Bravo D., Maddox C.W., Pettigrew J.E., 2013. Dietary plant extracts alleviate diarrhea and alter immune responses of weaned pigs experimentally infected with a pathogenic Escherichia coli. J. Anim. Sci. 91, 5294–5306, https://doi.org/10.2527/jas.20...
Loos M., Geens M., Schauvliege S., Gasthuys F., van der Meulen J., Dubreuil J.D., Goddeeris B.M., Niewold T., Cox E., 2012. Role of heat-stable enterotoxins in the induction of early immune responses in piglets after infection with enterotoxigenic Escherichia coli. PloS ONE 7, e41041, https://doi.org/10.1371/journa...
Lykkesfeldt J., Svendsen O., 2007. Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet. J. 173, 502–511, https://doi.org/10.1016/j.tvjl...
Maenner K., Vahjen W., Simon O., 2011. Studies on the effects of essential-oil-based feed additives on performance, ileal nutrient digestibility, and selected bacterial groups in the gastrointestinal tract of piglets. J. Anim. Sci. 89, 2106–2112, https://doi.org/10.2527/jas.20...
Mancini-Filho J., Van-Koiij A., Mancini D.A., Cozzolino F.F., Torres R.P., 1998. Antioxidant activity of cinnamon (Cinnamomum zeylanicum, Breyne) extracts. Boll. Chim. Farm. 137, 443–447
NRC, 2012. Nutrient Requirements of Swine. 11th Revised Edition. National Academy Press. Washington, DC (USA)
Si W., Gong J., Chanas C., Cui S., Yu H., Caballero C., Friendship R.M., 2006. In vitro assessment of antimicrobial activity of carvacrol, thymol and cinnamaldehyde towards Salmonella serotype Typhimurium DT104: effects of pig diets and emulsification in hydrocolloids. J. Appl. Microbiol. 100, 1282–1291, https://doi.org/10.1111/j.1365...
Trevisi P., Merialdi G., Mazzoni M., Casini L., Tittarelli C., De Filippi S., Minieri L., Lalatta-Costerbosa G., Bosi P., 2007. Effect of dietary addition of thymol on growth, salivary and gastric function, immune response, and excretion of Salmonella enterica serovar Typhimurium, in weaning pigs challenged with this microbe strain. Ital. J. Anim. Sci. 6, (Suppl. 1), 374-376
Ünlü A., Türközkan N., Cimen B., Karabicak U., Yaman H., 2001. The effect of Escherichia coli-derived lipopolysaccharides on plasma levels of malondialdehyde and 3-nitrotyrosine. Clin. Chem. Lab. Med. 39, 491–493, https://doi.org/10.1515/CCLM.2...
Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Telser J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84, https://doi.org/10.1016/j.bioc...
Wang X., Zhao X., 2009. Contribution of oxidative damage to antimicrobial lethality. Antimicrob. Agents Chemother. 53, 1395–1402, https://doi.org/10.1128/AAC.01...
Windisch W., Schedle K., Plitzner C., Kroismayr A., 2008. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 86, (Suppl. E), E140–E148, https://doi.org/10.2527/jas.20...
Zeng Z., Xu X., Zhang Q., Li P., Zhao P., Li Q., Liu J., Piao X., 2015. Effects of essential oil supplementation of a low-energy diet on performance, intestinal morphology and microflora, immune properties and antioxidant activities in weaned pigs. Anim. Sci. J. 86, 279–285, https://doi.org/10.1111/asj.12...
Towards Zero Zinc Oxide: Feeding Strategies to Manage Post-Weaning Diarrhea in Piglets
Andrea Bonetti, Benedetta Tugnoli, Andrea Piva, Ester Grilli
Redox balance and immunity of piglets pre- and post-E. coli challenge after treatment with hemp or fish oil, and vitamin E
Pernille A. Madsen, Søren K. Jensen, Charlotte Lauridsen
Scientific Reports
Journals System - logo
Scroll to top