ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
In this study, two trials were conducted to determine phosphorus (P) digestibility and metabolizable energy (ME) concentrations of compound feeds. The feeds were formulated with either wheat or hybrid rye supplemented with soybean meal (SBM) or rapeseed meal (RSM). The compound feeds were fed with (+) (trial 1) or without (−) (trial 2) phytase supplementation to estimate the effect of intrinsic phytase activity in wheat and rye. In addition, nitrogen (N) balance of the test rations was evaluated. The P content in each test ration, consisting of a basal ration (deficient in P) and a compound feed, was adjusted to keep digestible P below 2.0 g/kg dry matter. All compound feeds were tested in a duplicate 3 × 3 Latin Square design. Pigs were kept in metabolism crates for a 7-day adaptation period and a 5-day collection period during which faeces and urine were quantitatively collected. Phytase supplementation (P < 0.05) and the source of protein supplementation (P < 0.05) exerted an influence on P digestibility. Phytase supplementation levelled P digestibility, resulting in values of 70.2% and 69.5% for SBM-compound feed and RSM-compound feed, respectively. The type of cereal grain had no effect on P digestibility of compound feeds, indicating that intrinsic phytase did not show differential efficacy. The ME concentration of all compound feeds was high (≥ 14.2 MJ/kg dry matter) and appropriate for growing pigs. Phytase supplementation had no effect on ME concentration of compound feeds. Rye and RSM, containing higher fibre concentration than wheat and SBM, shifted N excretion from urine to faeces, which may help to reduce ammonia release from slurry.
FUNDING
The study was supported by funds from the Federal Ministry of Food and Agriculture (BMEL, Germany) based on a decision of the Parliament of the Federal Republic of Germany, administered by the Federal Office for Agriculture and Food (BLE, Germany) under the Innovation Support Programme (support code 281B101216).
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
 
REFERENCES (34)
1.
Agyekum A.K., Nyachoti C.M., 2017. Nutritional and metabolic consequences of feeding high-fiber diets to swine: a review. Engineering 3, 716–725, https://doi.org/10.1016/J.ENG.....
 
2.
Archs Toledo J.L., Lee S.A., McGhee M.L., Mateos G.G., Stein H.H., 2020. Intrinsic phytase in hybrid rye increases the digestibility of phosphorus in corn and soybean meal in diets fed to growing pigs. J. Anim Sci. 98, 1–6, https://doi.org/10.1093/jas/sk....
 
3.
Arredondo M.A., Casas G.A., Stein H.H., 2019. Increasing levels of microbial phytase increases the digestibility of energy and minerals in diets fed to pigs. Anim. Feed Sci. Technol. 248, 27–36, https://doi.org/10.1016/j.anif....
 
4.
Bindelle J., Leterme P., Buldgen A., 2008. Nutritional and environmental consequences of dietary fibre in pig nutrition: a review. Biotechnol. Agron. Soc. Environ. 12, 69–80.
 
5.
Choi H.B., Jeong J.H., Kim D.H., Lee Y., Kwon H., Kim Y.Y., 2015. Influence of rapeseed meal on growth performance, blood profiles, nutrient digestibility and economic benefit of growingfinishing pigs. Asian-Australas. J. Anim. Sci. 28, 1345–1353, https://doi.org/10.5713/ajas.1....
 
6.
Dersjant-Li Y., Awati A., Schulze H., Partridge G., 2015. Phytase in non-ruminant animal nutrition. A critical review on phytase activities in the gastrointestinal tract and influencing factors. J. Sci. Food Agric. 95, 878–896, https://doi.org/10.1002/jsfa.6....
 
7.
Dersjant-Li Y. Dusel G., 2019. Increasing the dosing of a Buttiauxella phytase improves phytate degradation, mineral, energy, and amino acid digestibility in weaned pigs fed a complex diet based on wheat, corn, soybean meal, barley, and rapeseed meal. J. Anim. Sci. 97, 2524–2533, https://doi.org/10.1093/jas/sk....
 
8.
DLG (Deutsche Landwirtschaftsgesellschaft), 2010. Erfolgreiche Mastschweinefütterung. Eine Information des DLGArbeitskreises Futter und Fütterung. DLG-Kompakt. DLGVerlag. Frankfurt/Main (Germany).
 
9.
DLG (Deutsche Landwirtschaftsgesellschaft), 2014. DLGFutterwerttabellen – Schweine. DLG-Verlag. Frankfurt/Main (Germany).
 
10.
Düngelhoef M., Rodehutscord M., Spiekers H., Pfeffer E., 1994. Effects of supplemental microbial phytase on availability of phosphorus contained in maize, wheat and triticale to pigs. Anim. Feed Sci. Technol. 49, 1–10, https://doi.org/10.1016/0377-8....
 
11.
Geiger H.H., Miedaner T., 2009. Rye breeding. In: M. Carena (Editor). Cereals. Springer. New York, NY (USA), pp. 157–181, https://doi.org/10.1007/978-0-....
 
12.
GfE (Gesellschaft für Ernährungsphysiologie), 1994. Die Bestimmung des verdaulichen Phosphors beim Schwein. Proc. Soc. Nutr. Physiol. 2, 113–119.
 
13.
GfE (Gesellschaft für Ernährungsphysiologie), 2008. Recommendations for the supply of energy and nutrients to pigs. DLG-Verlag, Frankfurt/Main (Germany).
 
14.
Hovenjürgen M., Rodehutscord M., Pfeffer E., 2003. Effect of fertilization and variety on digestibility of phosphorus from plant feedstuffs in pigs. J. Anim. Feed Sci. 12, 83–93, https://doi.org/10.22358/jafs/....
 
15.
Jonsson K., Andersson R., Bach Knudsen K.E. et al., 2018. Rye and health – where do we stand and where do we go? Trends Food Sci. Technol. 79, 78–87, https://doi.org/10.1016/j.tifs....
 
16.
Klein N., Papp M., Rosenfelder-Kuon P., Schroedter A., Avenhaus U., Rodehutscord M., 2021. Phosphorus digestibility and phytate degradation in pigs fed wheat-based diets with different intrinsic phytase activity and added microbial phytase. Arch. Anim. Nutr. 75, 450–464, https://doi.org/10.1080/174503....
 
17.
Klein N., Sarpong N., Feuerstein D., Camarinha-Silva A., Rodehutscord M., 2022. Effects of different dietrary Ca levels on precaecal and postileal phytate degradation, P digestibility, and faecal microbiota in pigs. Proc. Soc. Nutr. Physiol., 50.
 
18.
Licitra G., Hernandez T.M., Van Soest P.J., 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57, 347–358, https://doi.org/10.1016/0377-8....
 
19.
Madsen C.K., Brinch-Pedersen H., 2020. Globoids and phytase: the mineral storage and release system in seeds. Int. J. Mol. Sci. 21, 7519, https://doi.org/10.3390/ijms21....
 
20.
Mason V.C., Frederiksen J.H., 1979. Partition of the nitrogen in sheep faeces with detergent solutions, and its application to the estimation of the true digestibility of dietary nitrogen and the excretion of non dietary faecal nitrogen. Z. Tierphysiol. Tierernaehr. Futtermittelkd. 41, 121–131, https://doi.org/10.1111/j.1439....
 
21.
McGhee M.L., Stein H.H., 2019. Effects of microbial phytase on standardized total tract digestibility of phosphorus in hybrid rye, barley, wheat, corn, and sorghum fed to growing pigs. Transl. Anim. Sci. 3, 1238–1245, https://doi.org/10.1093/tas/tx....
 
22.
McGhee M.L., Stein H.H., 2020. The apparent ileal digestibility and the apparent total tract digestibility of carbohydrates and energy in hybrid rye are different from some other cereal grains when fed to growing pigs. J. Anim. Sci. 98, 1–10, https://doi.org/10.1093/jas/sk....
 
23.
Mejicanos G., Sanjayan N., Kim I.H., Nyachoti C.M., 2016. Recent advances in canola meal utilization in swine nutrition. J. Anim. Sci. Technol. 58, 7, https://doi.org/10.1186/s40781....
 
24.
Miedaner T., Geiger H.H., 2015. Biology, genetics, and management of ergot (Claviceps spp.) in rye, sorghum, and pearl millet. Toxins 7, 659–678, https://doi.org/10.3390/toxins....
 
25.
Pettersson D., Pontoppi K., 2013. Soybean meal and the potential for upgrading its feeding value by enzyme supplementation. In: H. El-Shemy (Editor). Soybean. IntechOpen. London (UK), pp. 287–307, https:// doi.org/10.5772/52607.
 
26.
Rodehutscord M., Faust M., Hof C., 1997. Digestibility of phosphorus in protein-rich ingredients for pig diets. Arch. Tierernähr. 50, 201–211, https://doi.org/10.1080/174503....
 
27.
Rodehutscord M., Faust M., Lorenz H., 1996. Digestibility of phosphorus contained in soybean meal, barley, and different varieties of wheat, without and with supplemental phytase fed to pigs and additivity of digestibility in a wheat soybeanmeal diet. J. Anim. Physiol. Anim. Nutr. 75, 40–48, https://doi.org/10.1111/j.1439....
 
28.
Rosenfelder-Kuon P., Siegert W., Rodehutscord M., 2020. Effect of microbial phytase supplementation on P digestibility in pigs: a meta-analysis. Arch. Anim. Nutr. 74, 1–18, https://doi.org/10.1080/174503....
 
29.
Schemmer R., Spillner C., Südekum K.-H., 2020. Phosphorus digestibility and metabolisable energy concentrations of contemporary wheat, barley, rye and triticale genotypes fed to growing pigs. Arch. Anim. Nutr. 74, 429–444, https://doi.org/10.1080/174503....
 
30.
She Y., Liu Y., Stein H.H., 2017. Effects of graded levels of microbial phytase on apparent total tract digestibility of calcium and phosphorus and standardized total tract digestibility of phosphorus in four sources of canola meal and in soybean meal fed to growing pigs. J. Anim. Sci. 95, 2061–2070, https://doi.org/10.2527/jas.20....
 
31.
She Y., Wang Q., Stein H.H., Liu L., Li D., Zhang S., 2018. Additivity of values for phosphorus digestibility in corn, soybean meal, and canola meal in diets fed to growing pigs. Asian-Australas. J. Anim. Sci. 31, 1301–1307, https://doi.org/10.5713/ajas.1....
 
32.
VDLUFA (Verband Deutscher Landwirtschaftlicher Untersuchungsund Forschungsanstalten), 2012. Handbuch der landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch): Band III. Die chemische Untersuchung von Futtermitteln, 3rd ed. VDLUFA-Verlag. Darmstadt (Germany).
 
33.
Wilke V., 2020. Effekte eines Mischfutters mit steigenden Anteilen von Roggen bzw. Roggen und Rapsextraktionsschrot auf die Verdaulichkeit und Leistung sowie Milieu- und Substratbedingungen im Magen-Darm-Inhalt junger Schweine. Dissertation, Tierärztliche Hochschule. Hannover (Germany).
 
34.
Zeller E., Schollenberger M., Kühn I., Rodehutscord M., 2015. Hydrolysis of phytate and formation of inositol phosphate isomers without or with supplemented phytases in different segments of the digestive tract of broilers. J. Nutr. Sci. 4, 4932, https://doi.org/10.1017/jns.20....
 
ISSN:1230-1388
Journals System - logo
Scroll to top