Effect of nanoemulsified oils addition on rumen fermentation and fatty acid proportion in a rumen simulation technique
More details
Hide details
Poznan University of Life Sciences, Department of Animal Nutrition and Feed Management, Wołyńska 33, 60-637 Poznań, Poland
National Research Centre, Department of Dairy Sciences, 33 Bohouth St., Dokki, 12622 Giza, Egypt
Poznan University of Life Sciences, Department of Animal Physiology and Biochemistry, Wołyńska 33, 60-637 Poznań, Poland
M. Szumacher-Strabel   

Poznan University of Life Sciences, Department of Animal Nutrition and Feed Management, Wołyńska 33, 60-637 Poznań, Poland
Publication date: 2016-05-19
J. Anim. Feed Sci. 2016;25(2):116–124
The present study was carried out to investigate the potential of different oils nanoemulsions on the modulation of fatty acid proportions and their effect on selected ruminal bacteria using four-fermenter RUSITEC units of 1 l capacity each. Four treatments were investigated: 1. control group (11 g of dried total mixed ration), 2. the control plus soyabean oil (5% on dry matter basis), 3. the control plus fish oil (5% on dry matter basis), and 4. the control plus soyabean-fish oils blend (1:1 v/v; 5% on dry matter basis). All oils were in nanoemulsified form and were added directly to the RUSITEC fermenters during the 10-day-feeding process. The obtained results indicated that the use of the nanoemulsified oils didn’t affect total bacterial count; however, the nanoemulsified fish and soyabean-fish oil blend treatments decreased (P < 0.002) the relative proportions of both Butyrivibrio fibrisolvens and Ruminococcus albus. A significant decrease (P = 0.035) in Butyrivibrio proteoclasticus was only noticed after the nanoemulsified soyabean-fish oil blend addition. Regarding the fatty acids in the fermentation fluid, the nanoemulsified oils increased significantly (P < 0.001) the proportions of oleic, linoleic and linolenic acids. In conclusion, nanoemulsified soyabean oil modulates the polyunsaturated fatty acids in ruminal cultures without the negative effect on rumen fermentation parameters.
AbuGhazaleh A.A., Ishlak A., 2014. Effects of incremental amounts of fish oil on trans fatty acids and Butyrivibrio bacteria in continuous culture fermenters. J. Anim. Physiol. Anim. Nutr. 98, 271–278.
Bauchart D., Legay-Carmier F., Doreau M., Gaillard B., 1990. Lipid metabolism of liquid-associated and solid-adherent bacteria in rumen contents of dairy cows offered lipid-supplemented diets. Brit. J. Nutr. 63, 563–578.
Beam T.M., Jenkins T.C., Moate P.J., Kohn R.A., Palmquist D.L., 2000. Effects of amount and source of fat on the rates of lipolysis and biohydrogenation of fatty acids in ruminal contents. J. Dairy Sci. 83, 2564–2573.
Boerman J.P., Lock A.L., 2014. Effect of unsaturated fatty acids and triglycerides from soybeans on milk fat synthesis and biohydrogenation intermediates in dairy cattle. J. Dairy Sci. 97, 7031–7042.
Cieślak A., El-Sherbiny M., Szczechowiak J., Kowalczyk D., Pers-Kamczyc E., Bryszak M., Szulc P., Jóźwik A., Szumacher-Strabel M., 2015. Rapeseed and fish oil mixtures supplied at low dose can modulate milk fatty acid composition without affecting rumen fermentation and productive parameters in dairy cows. Anim. Sci. Pap. Rep. 33, 357–372.
Cieślak A., Váradyová Z., Kišidayová S., Jalč D., Szumacher-Strabel M., 2013. Effect of diets with fruit oils supplements on rumen fermentation parameters, fatty acid composition and methane production in vitro. J. Anim. Feed Sci. 22, 26–34.
Czerkawski J.W., Breckenridge G., 1977. Design and development of a long-term rumen simulation technique (Rusitec). Brit. J. Nutr. 38, 371–384.
El-Sherbiny M., Cieslak A., Pers-Kamczyc E., Szczechowiak J., Kowalczyk D., Szumacher-Strabel M., 2016. Short communication: A nanoemulsified form of oil blends positively affects the fatty acid proportion in ruminal batch cultures. J. Dairy Sci. 99, 399–407.
Ericsson M., Hanstorp D., Hagberg P., Enger J., Nyström T., 2000. Sorting out bacterial viability with optical tweezers. J. Bacteriol. 182, 5551–5555.
Fathi M., Mozafari M.R., Mohebbi M., 2012. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Technol. 23, 13–27.
Ghosh V., Mukherjee A., Chandrasekaran N., 2014. Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. Colloid. Surface B 114, 392–397.
Hellwing A.L.F., Sørensen M.T., Weisbjerg M.R., Vestergaard M., Lund P., 2012. Can rapeseed lower methane emission from heifers? Acta Agr. Scand. Sect. A - Anim. Sci. 62, 259–262.
Ishlak A., AbuGhazaleh A.A., Günal M., 2014. Short communication: Effect of blackberry and pomegranate oils on vaccenic acid formation in a single-flow continuous culture fermentation system. J. Dairy Sci. 97, 1067–1071.
IUPAC, 1987. Preparation of the Fatty Acid Methyl Esters. Standard Methods for the Analysis of Oils, Fats and Derivatives. Method 2.301. Blackwell Scientific Publications. Oxford (UK), pp. 123-129.
Kentish S., Wooster T.J., Ashokkumar M., Balachandran S., Mawson R., Simons L., 2008. The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. Technol. 9, 170–175.
Khiaosa-ard R., Leiber F., Soliva C.R., 2010. Methods of emulsifying linoleic acid in biohydrogenation studies in vitro may bias the resulting fatty acid profiles. Lipids 45, 651–657.
Lakalayeh G.A., Faridi-Majidi R., Saber R., Partoazar A., Mehr S.E., Amani A., 2012. Investigating the parameters affecting the stability of superparamagnetic iron oxide-loaded nanoemulsion using artificial neural networks. AAPS Pharm. Sci. Tech. 13, 1386–1395.
Lanier J.S., Corl B.A., 2015. Challenges in enriching milk fat with polyunsaturated fatty acids. J. Anim. Sci. Biotechnol. 6, 26, doi:10.1186/s40104-015-0025-0.
Li M., Penner G.B., Hernandez-Sanabria E., Oba M., Guan L.L., 2009. Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J. Appl. Microbiol. 107, 1924–1934.
Maeda H., Fujimoto C., Haruki Y., Maeda T., Kokeguchi S., Petelin M., Arai H., Tanimoto I., Nishimura F., Takashiba S., 2003.Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQgene and total bacteria. FEMS Immunol. Med. Microbiol. 39, 81–86.
Maia M.R.G., Chaudhary L.C., Bestwick C.S., Richardson A.J., McKain N., Larson T.R., Graham I.A., Wallace R.J., 2010. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol. 10, 52–62.
Martínez Marín A.L., Gómez-Cortés P., Gómez-Castro G., Juárez M., Pérez-Alba L., Pérez-Hernández M., de la Fuente M.A., 2013. Time-dependent variations in milk fatty acid content of goats fed 3 different plant oils. J. Dairy Sci. 96, 3238–3246.
Mason T.G., Wilking J.N., Meleson K., Chang C.B., Graves S.M., 2006. Nanoemulsions: formation, structure, and physical properties. J. Phys. - Condens. Matter 18, R635–R666.
McDougall E.I., 1948. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 43, 99–109.
Michalowski T., Harmeyer H., Breves G., 1986. The passage of protozoa from the reticulo-rumen through the omasum of sheep. Brit. J. Nutr. 65, 625–634.
Morsy T.A., Kholif S.M., Kholif A.E., Matloup O.H., Salem A.Z.M., Abu Elella A., 2015. Influence of sunflower whole seeds or oil on ruminal fermentation, milk production, composition, and fatty acid profile in lactating goats. Asian-Australas. J. Anim. Sci. 28, 1116–1122.
O’Brien M., Navarro-Villa A., Purcell P.J., Boland T.M., O’Kiely P., 2014. Reducing in vitro rumen methanogenesis for two contrasting diets using a series of inclusion rates of different additives. Anim. Prod. Sci. 54, 141–157.
Patra A.K., Yu Z., 2013. Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen. Bioresource Technol. 148, 352–360.
Potu R.B., AbuGhazaleh A.A., Hastings D., Jones K., Ibrahim S.A., 2011. The effect of lipid supplements on ruminal bacteria in continuous culture fermenters varies with the fatty acid composition. J. Microbiol. 49, 216–223.
Shingfield K.J., Kairenius P., Ärölä A. et al., 2012. Dietary fish oil supplements modify ruminal biohydrogenation, alter the flow of fatty acids at the omasum, and induce changes in the ruminal Butyrivibrio population in lactating cows. J. Nutr. 142, 1437–1448.
Shingfield K.J., Lee M.R.F., Humphries D.J., Scollan N.D., Toivonen V., Reynolds C.K., Beever D.E., 2010. Effect of incremental amounts of fish oil in the diet on ruminal lipid metabolism in growing steers. Brit. J. Nutr. 104, 56–66.
Soliva C.R., Hess H.D., 2007. Measuring methane emission of ruminants by in vitro and in vivo techniques. In: H.P.S. Makkar, P.E. Vercoe (Editors). Measuring Methane Production from Ruminants. Springer, Dordrecht (the Netherlands), pp. 15–31.
Storlien T.M., Harstad O.M., Narvaez N., Wang Y., McAllister T.A., 2012. Effects of different oils and plant extracts on in vitro ruminal methane production. Acta Agr. Scand. Sect. A - Anim. Sci. 62, 300–304.
Szumacher-Strabel M., Potkański A., Kowalczyk J., Cieślak A., Czauderna M., Gubała A., Jędroszkowiak P., 2002. The influence of supplemental fat on rumen volatile fatty acid profile, ammonia and pH level in sheep fed standard diet. J. Anim. Feed Sci. 11, 577–587.
Tangerman A., Nagengast F.M., 1996. A gas chromatographic analysis of fecal short-chain fatty acids, using the direct injection method. Anal. Biochem. 236, 1–8.
Wang R.-F., Cao W.-W., Cerniglia C.E., 1997. PCR detection of Ruminococcus spp. in human and animal faecal samples. Mol. Cell. Probe. 11, 259–265.
Wąsowska I., Maia M.R.G., Niedźwiedzka K.M., Czauderna M., Ramalho Ribeiro J.M.C., Devillard E., Shingfield K.J., Wallace R.J., 2006. Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Brit. J. Nutr. 95, 1199–1211.
Yu Z., Morrison M., 2004. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36, 808–812.
Zhang Z., Vriesekoop F., Yuan Q., Liang H., 2014. Effects of nisin on the antimicrobial activity of D-limonene and its nanoemulsion. Food Chem. 150, 307–312.
Blood serum metabolic profile and fatty acid composition in sheep fed concentrates with Camelina sativa cake and distillers dried grains with solubles
R. Steppa, A. Cieślak, M. Szumacher-Strabel, S. Bielińska-Nowak, M. Bryszak, M. Stanisz, K. Szkudelska
Small Ruminant Research
The possible application of fungal enriched substrates in ruminant nutrition. A review
Z. Varadyova, M. Certik, D. Jalc
Journal of Animal and Feed Sciences
Promising perspectives for ruminal protection of polyunsaturated fatty acids through polyphenol-oxidase-mediated crosslinking of interfacial protein in emulsions
N. De Neve, B. Vlaeminck, F. Gadeyne, E. Claeys, P. Van der Meeren, V. Fievez
Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes
Josef Jampilek, Jiri Kos, Katarina Kralova
Nano-Dispersed Glycerol as an Alternative Energy Source for Ruminant Nutrition
Mostafa Sayed Abde, Salah Abdelmonei, Ahmed Mahmoud Ab, Mohamed El-Sherbin
Asian Journal of Biological Sciences
Rapeseed and linseed oil supplementation affects hydrolytic activities in the rumen of sheep
Małgorzata Majewska, Renata Miltko, Agata Krawczyńska, Grzegorz Bełżecki, Barbara Kowalik
Livestock Science