CC-BY 4.0

Effect of increasing levels of raw and extruded narrow-leafed lupin seeds in broiler diet on performance parameters, nutrient digestibility and AMEN value of diet

M. Hejdysz 1  ,  
M. Kubiś 1,  
D. Jamroz 2,  
A. Zaworska 1,  
Poznań University of Life Sciences, Department of Animal Nutrition and Feed Management, Wołyńska 33, 60-637 Poznań, Poland
Wrocław University of Environmental and Life Sciences, Department of Animal Nutrition and Feed Quality, Chełmońskiego 38C, 51-630 Wrocław, Poland
J. Anim. Feed Sci. 2018;27(1):55–64
Publish date: 2018-02-08
In the first study conducted to investigate the nutritional value of raw and extruded narrow-leafed lupin (Lupinus angustifolius) seeds cv. Boruta, 60 male Ross 308 chickens of age 16–20 days were used (Experiment 1). In 35-day performance trial (Experiment 2), 960 1-day-old chickens were randomly allotted to 11 treatments and fed diets containing 0, 50, 100, 200, 250 or 300 g · kg−1 diet of raw or extruded narrow-leafed lupin seeds. In the first experiment, extrusion of narrow-leafed lupin seeds led to the decrease of neutral detergent fibre (NDF) concentration. Seed processing increased fat digestibility and nitrogen retention in chickens but had no effect on ileal digestibility of protein and amino acids. There was a tendency to increase the apparent metabolizable energy corrected to zero N balance (AMEN) after lupin extrusion. In the second experiment, the inclusion of increasing levels of raw or extruded seeds into diets quadratically decreased body weight gains (BWGs) of birds, except for broilers fed extruded lupin on days 15–35. The extrusion increased the BWGs of birds in the whole trial period (days 0–35). Increasing levels of raw and extruded narrow-leafed lupin seeds quadratically increased feed conversion ratio during the experiment. So, the extrusion of narrow-leafed lupin seeds had a limited positive effect on the chemical composition of seeds and growth performance of broiler chickens.
M. Hejdysz   
Poznań University of Life Sciences, Department of Animal Nutrition and Feed Management, Wołyńska 33, 60-637 Poznań, Poland
1. AOAC International, 2007. Official Methods of Analysis of AOAC International. 18th Edition. 2nd Revision. Gaithersburg, MD (USA).
2. Choct M., 2009. Managing gut health through nutrition. Br. Poult. Sci. 50, 9–15, https://doi.org/10.1080/00071660802538632.
3. Diaz D., Morlacchini M., Masoero F., Moschini M., Fusconi G., Piva G., 2006. Pea seeds (Pisum sativum), faba beans (Vicia faba var. minor) and lupin seeds (Lupinus albus var. multitalia) as protein sources in broiler diets: effect of extrusion on growth performance. Ital. J. Anim. Sci. 5, 43–53, https://doi.org/10.4081/ijas.2006.43.
4. Farrell D.J., Perez-Maldonado R.A., Mannion P.F., 1999. Optimum inclusion of field peas, faba beans, chick peas and sweet lupins in poultry diets. II. Broiler experiments. Br. Poult. Sci. 40, 674–680, https://doi.org/10.1080/00071669987070.
5. Gdala J., Buraczewska L., 1996. Chemical composition and carbohydrate content of seeds from several lupin species. J. Anim. Feed Sci. 5, 403–416, https://doi.org/10.22358/jafs/69618/1996.
6. Haug W., Lantzsch H.-J., 1983. Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric. 34, 1423–1426, https://doi.org/10.1002/jsfa.2740341217.
7. Hejdysz M., Kaczmarek S.A., Rutkowski A., 2016b. Effect of extrusion on the nutritional value of peas for broiler chickens. Arch. Anim. Nutr. 70, 364–377, https://doi.org/10.1080/1745039X.2016.1206736.
8. Hejdysz M., Kaczmarek S.A., Rutkowski A., 2016a. Extrusion cooking improves the metabolisable energy of faba beens and the amino acid digestibility in broilers. Anim. Feed Sci. Technol. 212, 100–111, https://doi.org/10.1016/j.anifeedsci.2015.12.008.
9. Hejdysz M., Kaczmarek S.A., Rutkowski A., 2015. Factors affecting the nutritional value of pea (Pisum sativum) for broilers. J. Anim. Feed Sci. 24, 252–259, https://doi.org/10.22358/jafs/65631/2015.
10. Hill F., Anderson D.L., 1958. Comparison of metabolizable energy and productive energy determination with growing chicks. J. Nutr. 64, 587–603, https://doi.org/10.1093/jn/64.4.587
11. Jamroz D., Kubizna J., 2008. Harmful substances in legume seeds – their negative and beneficial properties. Polish J. Vet. Sci. 11, 389–404.
12. Kaczmarek S.A., Kasprowicz-Potocka M., Hejdysz M., Mikuła R., Rutkowski A., 2014. The nutritional value of narrow-leafed lupin (Lupinus angustifolius) for broilers. J. Anim. Feed Sci. 23, 160–166, https://doi.org/10.22358/jafs/65705/2014.
13. Lahuta L.B., Górecki R.J., 2011. Raffinose in seedlings of winter vetch (Vicia villosa Roth.) under osmotic stress and followed by recovery. Acta Physiol. Plant. 33, 725–733, https://doi.org/10.1007/s11738-010-0597-4.
14. Lampart-Szczapa E., Kossakowska J., Nogala-Kałucka M., Malinowska M., Siger A., 2007. Phenolic compounds of extruded lupin preparations (in Polish). Zesz. Probl. Post. Nauk Rol. 522, 393–397.
15. Lampart-Szczapa E., Łoza A., 2007. Functional components of lupin seeds – the advantages and potential disadvantages (in Polish). Zesz. Probl. Post. Nauk Rol. 522, 387–392.
16. Laudadio V., Tufarelli V., 2011b. Dehulled‐micronised lupin (Lupinus albus L. cv. Multitalia) as the main protein source for broilers: influence on growth performance, carcass traits and meat fatty acid composition. J. Sci. Food Agric. 91, 2081–2087, https://doi.org/10.1002/jsfa.4426.
17. Laudadio V., Tufarelli V., 2011a. Influence of substituting dietary soybean meal for dehulled-micronized lupin (Lupinus albus cv. Multitalia) on early phase laying hens production and egg quality. Livest. Sci. 140, 184–188, https://doi.org/10.1016/j.livsci.2011.03.029.
18. Leontowicz H., Leontowicz M., Kostyra H., Kulasek G., Gralak M.A., Krzemiński R., Podgurniak M., 2001. Effects of raw or extruded legume seeds on some functional and morphological gut parameters in rats. J. Anim. Feed Sci. 10, 169–183, https://doi.org/10.22358/jafs/67957/2001.
19. Lv M., Yan L., Wang Z., An S., Wu M., Lv Z., 2015. Effects of feed form and feed particle size on growth performance, carcass characteristics and digestive tract development of broilers. Anim. Nutr. 1, 252–256, https://doi.org/10.1016/j.aninu.2015.06.001.
20. Martín-Cabrejas M.A., Jaime L., Karanja C., Downie A.J., Parker M.L., Lopez-Andreu F.J., Maina G., Esteban R.M., Smith A.C., Waldron K.W., 1999. Modifications to physicochemical and nutritional properties of hard-to-cook beans (Phaseolus vulgaris L.) by extrusion cooking. J. Agric. Food Chem. 47, 1174–1182, https://doi.org/10.1021/jf980850m.
21. Myers W.D., Ludden P.A., Nayigihugu V., Hess B.W., 2004. Technical note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci. 82, 179–183, https://doi.org/10.2527/2004.821179x.
22. Nalle C.L., Ravindran V., Ravindran G., 2011. Nutritional value of narrow-leafed lupin (Lupinus angustifolius) for broiler. Br. Poult. Sci. 52, 775–781, https://doi.org/10.1080/00071668.2011.639343.
23. Rubio L.A., Brenes A., Centeno C., 2003. Effects of feeding growing broiler chickens with practical diets containing lupin (Lupinus angustifolius) seed meal. Br. Poult. Sci. 44, 391–397, https://doi.org/10.1080/0007166031000085553.
24. Rutkowski A., Kaczmarek S.A., Hejdysz M., Adamski M., Nowaczewski S., Jamroz D., 2017. The effect of addition of yellow lupin seeds (Lupinus luteus L.) to laying hen diets on performance and egg quality parameters. J. Anim. Feed Sci. 2017, 26, 247–256, https://doi.org/10.22358/jafs/76322/2017.
25. Rutkowski A., Kaczmarek S.A., Hejdysz M., Jamroz D., 2016. Effect of extrusion on nutrients digestibility, metabolizable energy and nutritional value of yellow lupine seeds for broiler chickens. Ann. Anim. Sci. 16, 1059–1072, https://doi.org/10.1515/aoas-2016-0025.
26. Rutkowski A., Kaczmarek S.A., Hejdysz M., Nowaczewski S., Jamroz D., 2015. Concentrates made from legume seeds (Lupinus angustifolius, Lupinus lutens and Pisum sativum) and rapeseed meal as protein source in laying hen diets. Ann. Anim. Sci. 15, 129–142, https://doi.org/10.2478/aoas-2014-0061.
27. Selle P.H., Ravindran V., Bryden W.L., Scott T., 2006. Influence of dietary phytate and exogenous phytase on amino acid digestibility in poultry. A review. J. Poult. Sci. 43, 89–103, https://doi.org/10.2141/jpsa.43.89.
28. Short F.J., Gorton P., Wiseman J., Boorman K.N., 1996. Determination of titanium dioxide added as an inert marker in chicken digestability studies. Anim. Feed Sci. Technol. 59, 215–221, https://doi.org/10.1016/0377-8401(95)00916-7.
29. Smulikowska S., Konieczka P., Czerwinski J., Mieczkowska A., Jankowiak J., 2013. Feeding broiler chickens with practical diets containing lupin seeds (L. angustifolius or L. luteus): effects of incorporation level and mannanase supplementation on growth performance, digesta viscosity, microbial fermentation and gut morphology. J. Anim. Feed Sci. 23, 64–72, https://doi.org/10.22358/jafs/65718/2014.
30. Smulikowska S., Pastuszewska B., Mieczkowska A., Lechowski R., 1999. Effect of gramine – indole alkaloid of yellow lupin on performance and some physiological parameters in broiler chicken. In: Proceedings of the 12th European Symposium on Poultry Nutrition. Veldhoven (the Netherlands), pp. 313–315.
31. Smulikowska S., Rutkowski A. (Editors), 2005. Recommended Allowances and Nutritive Value of Feedstuffs. Poultry Feeding Standards (in Polish). 4th Edition. The Kielanowski Institute of Animal Physiology and Nutrition, PAS, Jabłonna (Poland).
32. Sobota A., Sykut-Domańska E., Rzedzicki Z., 2010. Effect of extrusioncooking process on the chemical composition of corn-wheat extrudates, with particular emphasis on dietary fibre fractions. Pol. J. Food Nutr. Sci. 60, 251–259.
33. Steenfeldt S., González E., Bach Knudsen K.E., 2003. Effects of inclusion with blue lupins (Lupinus angustifolius) in broiler diets and enzyme supplementation on production performance, digestibility and dietary AME content. Anim. Feed Sci. Technol. 110, 185–200, https://doi.org/10.1016/S0377-8401(03)00218-9.
34. Svihus B., Juvik E., Hetland H., Krogdahl Å., 2004. Causes for improvement in nutritive value of broiler chicken diets with whole wheat instead of ground wheat. Br. Poult. Sci. 45, 55–60, https://doi.org/10.1080/00071660410001668860.
35. Wasilewko J., Buraczewska L., 1999. Chemical composition including content of amino acids, minerals and alkaloids in seeds of three lupin species cuiltivated in Poland. J. Anim. Feed Sci. 8, 1–12, https://doi.org/10.22358/jafs/68803/1999.
36. World’s Poultry Science Association, 1989. European Table of Energy Values for Poultry Feedstuffs. 3rd Edition. Subcommittee Energy of the Working Group No 2 (Nutrition) of the European Federation of Branches of the World’s Poultry Science Association. Beekbergen (The Netherlands).
37. Zalewski K., Lahuta L.B., Horbowicz M., 2001. The effect of soil drought on the composition of carbohydrates in yellow lupin seeds and triticale kernels. Acta Physiol. Plant. 23, 73–78, https://doi.org/10.1007/s11738-001-0025-x.