ORIGINAL PAPER
Evaluation of silage quality, rumen fermentation dynamics,
degradability, and methane emissions of total mixed rations
formulated from agricultural by-products: an in vitro analysis
More details
Hide details
1
IPB University, Faculty of Animal Science, Department of Animal Nutrition and Feed Technology, Bogor 16610, Indonesia
Publication date: 2025-05-09
Corresponding author
M. Ridla
IPB University, Faculty of Animal Science, Department of Animal Nutrition and Feed Technology, Bogor 16610, Indonesia
Nahrowi Nahrowi
IPB University, Faculty of Animal Science, Department of Animal Nutrition and Feed Technology, Bogor 16610, Indonesia
KEY
KEYWORDS
TOPICS
ABSTRACT
This study evaluates the silage fermentation quality, rumen
fermentation dynamics, degradability, and methane emissions of total mixed
rations (TMRs) formulated primarily with varying ratios of pineapple peel and
maize husk alongside other agricultural by-products (tofu waste 30%, soy sauce
waste 15%, rice bran 10%, and cassava pulp 5%). The TMR formulations
differed in crude protein (CP) and neutral detergent fibre (NDF) content due to
the changing proportions of pineapple peel (40% to 0%) and maize husk (0%
to 40%), with TMR-1, TMR-2, TMR-3, TMR-4, and TMR-5 containing pineapple
peel to maize husk ratios of 40:0, 30:10, 20:20, 10:30, and 0:40%, respectively.
All TMR silages were well-preserved, as evidenced by low pH (4.06–4.18) and
high lactic acid content (1.89–2.25% dry matter). TMR-1 and TMR-2, with lower NDF
and higher total digestible nutrients (TDN), demonstrated superior fermentation
quality, greater total short-chain fatty acid (TSCFA) production, and lower
methane emissions (15.98–15.87% of TSCFA) compared to TMR-4 and TMR-5
(17.85–17.98%). The higher in vitro degradability observed in TMR-1 and TMR-
2 was associated with balanced CP levels (14.02–14.86%) and moderate NDF
content (46.06–46.36%), which supported efficient microbial fermentation. In
contrast, TMR-4 and TMR-5, with higher NDF content (47.98–48.98%), showed
reduced degradability and increased methane production. These results
highlight the potential of TMR-1 (40:0) and TMR-2 (30:10) as promising options
for beef cattle. However, the lack of vitamin and mineral supplementation is
a limitation that should be addressed, and further in vivo studies are necessary
to validate nutrient absorption, utilisation, and overall animal performance.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (41)
1.
Ahn J.S., Son G.H., Kim M.J., Choi C.S., Lee C.W., Park J.K., Kwon E.G., Shin J.S., Park B.K., 2019. Effect of total digestible nutrients level of concentrates on growth performance, carcass characteristics, and meat composition of Korean Hanwoo steers. Food Sci. Anim. Resour. 39, 388–401,
https://doi.org/10.5851/kosfa.....
2.
AOAC, 1990. Fiber (acid detergent) and lignin in animal feed (method 973.18). In: Association of Official Analytical Chemists. 15th edition. Washington, DC (USA).
3.
AOAC International, 2011. Official methods of analysis of AOAC International. 18th edition. Gaithersburg, MD (USA).
4.
Barker S.B., Summerson W.H., 1941. The colorimetric determination of lactic acid in biological material. J. Biol. Chem. 138, 535–554,
https://doi.org/10.1016/S0021-....
5.
Conway E.J., O’Malley E., 1942. Microdiffusion methods. Ammonia and urea using buffered absorbents (revised methods for ranges greater than 10 μg N). Biochem. J. 36, 655–661,
https://doi.org/10.1042/bj0360....
6.
Dentinho M.T.P., Paulos K., Costa C., et al., 2023. Silages of agro-industrial by-products in lamb diets - Effect on growth performance, carcass, meat quality and in vitro methane emissions. Anim. Feed Sci. Technol. 298, 115603,
https://doi.org/10.1016/j.anif....
8.
Elghandour M.M.M.Y., Acosta-Lozano N., Díaz Alvarado T., Castillo-Lopez E., Cipriano-Salazar M., Barros-Rodríguez M., Inyang U.A., Purba R.A.P., Salem A.Z.M., 2023. Influence of Azadirachta indica and Cnidoscolus angustidens aqueous extract on cattle ruminal gas production and degradability in vitro. Front. Vet. Sci. 10, 1090729,
https://doi.org/10.1016/j.jevs....
9.
Ernawati A., Abdullah L., 2021. Ruminal macro mineral solubility of Indigofera zollingeriana top-leaves from plants with different planting density using in vitro technique. IOP Conf. Ser. EES 20, 012014,
https://doi.org/10.1088/1755-1....
10.
Fraval S., Mutua J.Y., Amole T., et al., 2024. Feed balances for ruminant livestock: Gridded estimates for data−constrained regions. Animal 18, 101199,
https://doi.org/10.1016/j.anim....
11.
Hernández Ruiz P.E., Mellado M., Adegbeye M.J., Salem A.Z.M., Ponce Covarrubias J.L., Elghandour M.M.M.Y., Omotoso O.B., 2024. Effects of long-term supplementation of Caesalpinia coriaria fruit extract on ruminal methane, carbon monoxide, and hydrogen sulfide production in sheep. Biomass Convers. Bioref. 14, 13377–13390,
https://doi.org/10.1007/s13399....
12.
Irawan A., Hartatik T., Bintara S., Astuti A., Kustantinah, 2024. Nutrient degradability, N balance, performance, and blood parameters of Kacang goats differing in GDF9 genotype fed different sources of dietary fiber. Trop. Anim. Sci. J. 47, 33–41,
https://doi.org/10.5398/tasj.2....
13.
Jayanegara A., Ridla M., Nahrowi, Laconi E.B., 2019. Estimation and validation of total digestible nutrient values of forage and concentrate feedstuffs. IOP Conf. Ser. Mater. Sci. Eng. 546, 042016,
https://doi.org/10.1088/1757-8....
14.
Khurshid M.A., Rashid M.A., Yousaf M.S., Naveed S., Shahid M.Q., Rehman H.U., 2023. Effect of NDF levels of complete pelleted diet and dietary transition period on rumen pH, growth performance, degradability, and blood indices in fattening male goats. Small Ruminant Res. 226, 107039,
https://doi.org/10.1016/j.smal....
15.
Kilic A., 1986. Silo feed (instruction, education, and application proposals). Bilgehan Press, 327 p.
16.
Kosugi A., Kondo A., Ueda M., Murata Y., Vaithanomsat P., Thanapase W., Arai T., Mori Y., 2009. Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase. Renew. Energy 34, 1354–1358,
https://doi.org/10.1016/j.rene....
17.
Kromann R.P., Meyer J.H., Stielau W.J., 1967. Steam distillation of volatile fatty acids in rumen ingesta. J. Dairy Sci. 50, 73–76,
https://doi.org/10.3168/jds.S0....
18.
Kung L., Shaver R.D., Grant R.J., Schmidt R.J., 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101, 4020–4033,
https://doi.org/10.3168/jds.20....
19.
Liu C., Li D., Chen W., Li Y., Wu H., Meng Q., Zhou Z., 2019. Estimating ruminal crude protein degradation from beef cattle feedstuff. Sci. Rep. 9, 11368,
https://doi.org/10.1038/s41598....
20.
Liu J., Bai Y., Liu F., Kohn R.A., Tadesse D.A., Sarria S., Li R.W., Song J., 2022. Rumen microbial predictors for short-chain fatty acid levels and the grass-fed regimen in Angus cattle. Animals 12, 2995,
https://doi.org/10.3390/ani122....
21.
Mehraj M., Das S., Feroz F., Wani A.W., Dar S.Q., Kumar S., Wani A.K., Farid A., 2024. Nutritional composition and therapeutic potential of pineapple peel - A comprehensive review. Chem. Biodivers. 21, e202400315,
https://doi.org/10.1002/cbdv.2....
22.
Muck R.E., Nadeau E.M.G., McAllister T.A., Contreras-Govea F.E., Santos M.C., Kung L. Jr., 2018. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 101, 3980–4000,
https://doi.org/10.3168/jds.20....
23.
Okoye C.O., Wang Y., Gao L., Wu Y., Li X., Sun J., Jiang J., 2023. The performance of lactic acid bacteria in silage production: A review of modern biotechnology for silage improvement. Microbiol. Res. 266, 127212,
https://doi.org/10.1016/j.micr....
24.
Pangesti R.T., Jayanegara A., Laconi E.B., 2024. Effects of level and type of essential oils on rumen methanogenesis and fermentation: A meta-analysis of in vitro experiments. J. Anim. Feed Sci. 33, 3, 263–269,
https://doi.org/10.22358/jafs/....
25.
Perez H.G., Stevenson C.K., Lourenco J.M., Callaway T.R., 2024. Understanding rumen microbiology: An overview. Encyclopedia 4, 148–157,
https://doi.org/10.3390/encycl....
27.
Pongsub S., Suriyapha C., Boontiam W., Cherdthong A., 2024. Effect of cassava pulp treated with Lactobacillus casei TH14, urea, and molasses on gas kinetics, rumen fermentation, and degradability using the in vitro gas technique. Heliyon 10, e29973,
https://doi.org/10.1016/j.heli....
28.
Pulungan M.A.R., Ridla M., Jayanegara A., Abu Hassim H., 2024. Evaluation of soybean by-products as ruminant feeds: An in vitro rumen fermentation study. AIP Conf. Proc. 3132, 040017,
https://doi.org/10.1063/5.0104....
29.
Ridla M., Nahrowi, 2025. Methane mitigation strategies by optimizing nutrient profiles in an eco-friendly mixture of cassava pulp and Indigofera zollingeriana branch silage with strategic protein supplementation. Adv. Anim. Vet. Sci. 13, 198–208,
https://doi.org/10.17582/journ....
30.
Ridla M., Mulyanto, Setiana M.A., Nahrowi, 2023. Nutrient content and digestibility of silage made from mixed oil palm fronds and tofu waste. Livest. Res. Rural Dev. 35, 6, Article 53.
31.
Ridla M., Uchida S., 1998. Effects of combined treatment of lactic acid bacteria and cell wall degrading enzymes on fermentation and composition of Rhodegrass (Chloris gayana Kunth.) silage. Asian Australas. J. Anim. Sci. 11, 522–529,
https://doi.org/10.5713/ajas.1....
32.
Ridla M., Uchida S., 1994. Fermentation quality and nutritive value of barley straw and wet brewers’ grains silage. Asian- Australas. J. Anim. Sci. 7, 517–522,
https://doi.org/10.5713/ajas.1....
33.
Rosani U., Hernaman I., Hidayat R., Hidayat D., 2024. Fermentability, digestibility, and gas production of Garut sheep fed maize straw silage-based rations balanced with rice bran and rice husks (in vitro). J. Anim. Feed Sci.,
https://doi.org/10.22358/jafs/....
34.
Sadarman S., Ridla M., Nahrowi N., Ridwan R., Jayanegara A., 2020. Evaluation of ensiled soy sauce by-product combined with several additives as an animal feed. Vet. World 13, 940–946,
https://doi.org/10.14202/vetwo....
35.
Shi R., Dong S., Mao J., Wang J., Cao Z., Wang Y., Li S., Zhao G., 2023. Dietary neutral detergent fiber levels impacting dairy cows’ feeding behavior, rumen fermentation, and production performance during the period of peak-lactation. Animals 13, 2876,
https://doi.org/10.3390/ani131....
36.
Sukri S.A.M., Andu Y., Sarijan S., et al., 2023. Pineapple waste in animal feed: A review of nutritional potential, impact, and prospects. Ann. Anim. Sci. 23, 339–352,
https://doi.org/10.2478/aoas-2....
37.
Theodorou M.K., Williams B.A., Dhanoa M.S., McAllan A.B., France J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Tech. 48, 185–197,
https://doi.org/10.1016/0377-8....
38.
Tresia G.E., Tiesnamurti B., Alwiyah A., Anwar A., 2024. Effects on in vitro digestibility and rumen fermentation of maize straw silage as a partial dietary replacement for Napier grass. J. Anim. Feed Sci. 33, 1, 119–127,
https://doi.org/10.22358/jafs/....
40.
Tuoxunjiang H., Yimamu A., Li X.Q., Maimaiti R., Wang Y.L., 2020. Effect of ensiled tomato pomace on performance and antioxidant status in the peripartum dairy cow. J. Anim. Feed Sci. 29, 2, 105–114,
https://doi.org/10.22358/jafs/....
41.
Vastolo A., Calabrò S., Cutrignelli M.I., 2022. A review on the use of agro-industrial CO-products in animals’ diets. Ital. J. Anim. Sci. 21, 577–594,
https://doi.org/10.1080/182805....