ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
The effect of three Festulolium braunii cultivars (Felopa, Perun, and Lofa) and five successive cuts on the nutritional value of herbage and silage was evaluated. The chemical composition, carbohydrate and protein fractions, ensilability, fermentation parameters were determined. The nutrient digestibility of experimental diets containing silages made from different F. braunii cultivars was determined by the simple balance methods in 45 Holstein-Friesian bulls (three groups of 15 animals) at the end of fattening. The experiment lasted 90 days, the animals were fed a total mixed ration. Festulolium braunii cv. Lofa and third-cut and fourth-cut herbage were characterized by the most desirable chemical composition. Festulolium braunii cv. Felopa had the highest concentration of water-soluble carbohydrates (P = 0.046) and the highest buffering capacity (P = 0.005). First-cut silage had the highest content of lactic acid (P = 0.018). The protein fraction composition of silage varied across cuts, and significant differences between cultivars were found only for fraction B1 (P = 0.046), whose proportion was highest in cv. Perun. Fourth-cut silage had the lowest proportion of fraction A (P ≤ 0.01) and the highest proportion of fraction B1 (P = 0.037). The nutrient digestibility coefficients of experimental diets were influenced by the number of cuts (P ≤ 0.05) and the interaction of both factors (P ≤ 0.01). The study confirmed the high feed value of F. braunii, which provides high-quality forage for ruminants. The significant differences in the nutritional value of F. braunii herbage and silage observed among cultivars and cuts indicate that various cultivars cut multiple times at different harvest dates should be tested in future studies.
REFERENCES (60)
1.
AOAC International, 2016. Official Methods of Analysis of AOAC International, 20th edition. Gaithersburg, MD, USA
 
2.
Babić S., Sokolovic D., Andelkovic S., Petrovic M., Jetvic G., Prijovic M., Racic N., 2022. Forage quality of different Festulolium cultivars. In Proceedings of the XIII International Scientific Agricultural Symposium “Agrosym 2022”, Jahorina, Bosnia and Herzegovina, 6-9 October 2022, 148–153
 
3.
Bazzaz F.A., Chiariello N.R., Coley P.D., Pitelka L.F., 1987. Allocating resources to reproduction and defense. BioScience 37, 58–67, https://doi.org/10.2307/131017...
 
4.
Campos-de Quiroz H., 2002. Plant genomics: An overview. Biol. Res. 35, 385–399, http://dx.doi.org/10.4067/S071...
 
5.
Cernoch V., Groenbaek O., 2015. Benefits of × Festulolium varieties in European agriculture. Grassland and forages in high output dairy farming systems. Grassland Science in Europe Proceedings of the 18th Symposium of the European Grassland Federation Wageningen, the Netherlands 15-17 June 2015, 20, 386.
 
6.
Chrenková M., Čerešňáková Z., Weisbjerg M.R., Formelová Z., Poláčiková M., Vondráková M., 2014. Characterization of proteins in feeds according to the CNCPS and comparison to in situ parameters. Czech J. Anim. Sci. 59, 288–295, https://doi.org/10.17221/7499-...
 
7.
Ciepiela G.A., Jankowski K., Jodelka J., 2003. The effect of differentiated forms of nitrogen fertilization on the yield of perennial ryegrass (Lolium perenne L.) and its content of carbohydrates and some forms of nitrogen. Acta Sci. Pol. Agric. 2, 131–139. (in Polish).
 
8.
Coblentz W.K., Brink G.E., Martin N.P., Undersander D.J., 2008. Harvest timing effects on estimates of rumen degradable protein from alfalfa forages. Crop Sci. 48, 778–788, https://doi.org/10.2135/cropsc...
 
9.
Dewhurst R.J., Fisher W.J., Tweed J.K., Wilkins R.J., 2003. Comparison of grass and legume silages for milk production. 1. Production responses with different levels of concentrate. J. Dairy Sci. 86, 2598–2611, https://doi.org/10.3168/jds.S0...
 
10.
Du Z., Risu N., Gentu G., Jia Y., Cai Y., 2020. Dynamic changes and characterization of the protein and carbohydrate fractions of native grass grown in Inner Mongolia during ensiling and the aerobic stage. Asian-Australas J. Anim. Sci. 33, 556–567, https://doi.org/10.5713/ajas.1...
 
11.
Edmunds B., Spiekers H., Südekum K-H., Nussbaum H., Schwarz F.J., Bennetta R., 2014. Effect of extent and rate of wilting on nitrogen components of grass silage. Grass Forage Sci. 69, 140–152, https://doi.org/10.1111/gfs.12...
 
12.
Fijałkowska M., Pysera B., Lipiński K., Strusińska D., 2015. Changes of nitrogen compounds during ensiling of high protein herbages - a review. Ann. Anim. Sci. 15, 289–305, https://doi.org/10.1515/aoas-2...
 
13.
Frankow-Lindberg B.E., Olsson K.-F., 2008. Digestibility and fiber content of leaves and straw of three Festulolium hybrids during spring growth. Grassl. Sci. Eur. 13, 456–458
 
14.
Gąsior R., 2002. Determination of volatile fatty acids and lactic acid in silage and rumen contents (in Polish). Biuletyn Informacyjny National Research Institute of Animal Production. Balice, (Poland).
 
15.
Geren H., Avcioglu R., Kavut Y.T., Tan K., Sargin S., 2014. An investigation on comparison of some annual warm season grasses with warm season perennial grasses in terms of ensilagable yield, forage quality and bio-ethanol yield under Mediterranean climate. The Journal of Ege University, Faculty of Agriculture 51, 243–251
 
16.
Ghesquière M., Emile J.-C., Jadas-Hécart J., Mousset C., Traineau R., Poisson C., 1996. First in vivo assessment of feeding value of Festulolium hybrids derived from Festuca arundinacea cv. glaucescens and selection for palatability. Plant Breed. 115, 238–244, https://doi.org/10.1111/j.1439....
 
17.
Ghesquière M., Humphreys M.W., Zwierzykowski Z., 2010. Festulolium. Chapter 12, 293-316. In: F. Veronesi, U. Posselt, B. Beart 14 Different cultivars of Festulolium forage in young cattle (Editors). Handbook on plant breeding, Eucarpia fodder crops and amenity grasses section. Springer-Verlag New York Inc., ISBN: 9781441907592, 5
 
18.
Grabber J.H., Coblentz W.K., 2009. Polyphenol, conditioning, and conservation effects on protein fractions and degradability in forage legumes. Crop Sci. 49, 1511–1522, https://doi.org/10.2135/cropsc...
 
19.
Hedqvist H., Udén P., 2006. Measurement of soluble protein degradation in the rumen. Anim. Feed Sci. Technol. 126, 1–21, https://doi.org/10.1016/j.anif...
 
20.
Houdek I., Jambor V., 2010. Festulolium Hybrids from Breeding Station Hladké Životice and their Quality. In: Proceedings of the 17th International Symposium of Forage Conservation, 17-19th March, 2010 Mendel University Brno. UVPS: Brno, 22–24
 
21.
Huhtanen P., Ahvenjärvi S., Weisbjerg M., Nørgaard P., 2006. Digestion and passage of fiber in ruminants. In: Sejrsen K.,Hvelplund T., Nielsen M.O. (eds) Ruminant physiology. Digestion, metabolism and impact of nutrition on gene expression, immunology and stress, 87–135. Wageningen NL: Wageningen Academic Publishers, https://doi.org/10.3920/978908...
 
22.
Huhtanen P., Nousiainen J.I., Khalili H., Jaakkola S., Heikkilä T., 2003. Relationships between silage fermentation characteristics and milk production parameters: analyses of literature data. Livest. Prod. Sci. 81, 57–73, https://doi.org/10.1016/S0301-...
 
23.
Humphreys M.W., Zwierzykowski Z., 2020. Festulolium, a century of research and breeding and its increased relevance in meeting the requirements for multifunctional grassland agriculture. Biol. Plant. 64, 578–590, https://doi.org/10.32615/bp.20...
 
24.
Huuskonen A., Pesonen M.A., 2017. Comparison of first-, second- and third-cut timothy silages in the diets of finishing beef bulls. Agric. Food Sci. 26, 16–24, https://doi.org/10.23986/afsci...
 
25.
Hymes-Fecht U.C., Broderick G.A., Muck R.E., Grabber J.H., 2013. Replacing alfalfa or red clover silage with birdsfoot trefoil silage in total mixed rations increases production of lactating dairy cows. J. Dairy Sci. 96, 460–469, https://doi.org/10.3168/jds.20...
 
26.
Hyrkäs M., Sairanen A., Kykkänen S., Virkajärvi P., Isolahti M., 2015. Different harvesting strategies and cultivar mixtures for grass silage production in Finland. In: A. van den Pol-van Dasselaar et al. (Editors). Grassland and forages in high output dairy farming systems. Proceedings of the 18th symposium of the European Grassland Federation, in June in Wageningen, the Netherlands. Grassland Science in Europe, 20, 239–241
 
27.
IZ PIB-INRA, 2016. Feeding Recommendations for Ruminants and Feed Tables. (in Polish). J. Strzetelski (Editor). National Research Institute of Animal Production. Kraków (Poland)
 
28.
Jarrige R. (Editor), 1989. Ruminant Nutrition. Recommended Allowances and Feed Tables. Institut National de la Recherche Agronomique (INRA) Publisher, Paris (France)
 
29.
Journal of Laws, 2015. On the protection of animals used for scientific or educational purposes item 266. available: https://isap.sejm.gov.pl/isap....
 
30.
Kaiser E., Polip I.V., Weiz K., 2002. The role of nitrate content in herbage to fermentability. XIIIth Internat. Silage Conference, Auchincruive, Scotland, 412–413
 
31.
Kitczak T., Jänicke H., Bury M., Malinowski R., 2021. The usefulness of mixtures with Festulolium braunii for the regeneration of grassland under progressive climate change. Agriculture 11, 537, https://doi.org/10.3390/agricu...
 
32.
Kostulak-Zielińska M., Potkański A., 2001. Quality of baled grass-clover silages ensiled with chemical additives. Chemical composition. Ann. Anim. Sci. 1, 153–165.
 
33.
Kryszak J., 2001. Yield and quality of the mixture of Festulolium braunii (K. Richter) A. Camus with meadow clover and sowing alfalfa on arable land. Probl. J. Adv. Agric. Sci. 479, 173–178. (in Polish)
 
34.
Kung Jr. L., Shaver R.D., Grant R.J., Schmidt R.J., 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101, 4020–4033, https://doi.org/10.3168/jds.20...
 
35.
Kuoppala K., Rinne M., Nousiainen J., Huhtanen P., 2008. The effect of cutting time of grass silage in primary growth and regrowth and the interactions between silage quality and concentrate level on milk production of dairy cows. Livest. Sci. 116, 171–182, https://doi.org/10.1016/j.livs...
 
36.
Lemaire G., Avice J.C., Kim T.H., Ourry A., 2005. Developmental changes in shoot N dynamics of lucerne (Medicago sativa L.) in relation to leaf growth dynamics as a function of plant density and hierarchical position within a canopy. J. Exp. Bot. 56, 935–943, https://doi.org/10.1093/jxb/er...
 
37.
Li X., Tian J., Zhang Q., Jiang Y., Hou J., Wu Z., Yu Z., 2018. Effects of applying Lactobacillus plantarum and Chinese gallnut tannin on the dynamics of protein degradation and proteases activity in alfalfa silage. Grass Forage Sci. 73, 648–659, https://doi.org/10.1111/gfs.12...
 
38.
Licitra G., Hernandez T.M., Van Soest P.J., 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57, 347–358, https://doi.org/10.1016/0377-8...
 
39.
McDonald P., Henderson A.R., Heron S.J.E., 1991. The Biochemistry of Silage. Chalcombe Publications, Marlow Bucks, UK, 2nd edition
 
40.
Muck R.E., O’Kiely P., Wilson R.K., 1991. Buffering capacities in permanent pasture grasses. Ir. J. Agric. Res. 129–141
 
41.
Obraztsov V.N., Kadyrov S.V., Shchedrina D.I., 2022. Festulolium plant yield, nutritive and energy value depending on its variety. In: IOP Conference Series: Earth and Environmental Science, 1043, 012033. IOP Publishing https://doi.org/10.1088/1755-1...
 
42.
Østrem L., Volden B., Steinshamn H., Volden H., 2015. Festulolium fiber characteristics and digestibility as affected by maturity. Grass Forage Sci. 70, https://doi.org/10.1111/gfs.12...
 
43.
Playne M.J., McDonald P., 1996. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 17, 264–268, https://doi.org/10.1002/jsfa.2...
 
44.
Pozdisek J., Loucka R., Machacova E., 2003. Digestibility and nutrition value of grass silages. Czech J. Anim. Sci. 48, 359–364
 
45.
Purwin C., Pogorzelska-Przybyłek P., Stefańska B., Żukowski P., Winiarska-Mieczan A., Krzebietke S.J., 2024. Different Festulolium cultivars in lamb nutrition-feed value, growth performance, and meat quality. J. Anim. Feed Sci. 33, 525–534, https://doi.org/10.22358/jafs/...
 
46.
Rojas-García A.R., Torres-Salado N., Maldonado-Peralta M.A., Sánchez-Santillán P., García-Balbuena A., Mendoza-Pedroza S.I., Álvarez-Vázquez P., Herrera-Pérez J., Hernández-Garay A., 2018. Growth curve and quality of Cobra grass (Brachiaria hybrid BR02/1794) at two cutting intensities (in Spanish) Agroproductividad 11, 34–38
 
47.
Sairanen A., Palmio A., Rinne M., 2016. Milk production potential of regrowth grass silages. In: M. Höglind et al. (Editors). The multiple roles of grassland in the European bioeconomy. Proceedings of the 26th General Meeting of European Grassland Federation, in September, in Trondheim, Norway. Grassland Science in Europe, 21, 379–381
 
48.
Schwab C.G., Tylutki T.P., Ordway R.S., Sheaffer C., Stern M.D., 2003. Characterization of proteins in feeds. J. Dairy Sci. 86, 88– 103, https://doi.org/10.3168/jds.S0...
 
49.
Slottner D., 2002. Effect of ensiling a crop in big bales or small scale silos. XIIIth International Silage Conference, Auchincruive, Scotland, 142–143
 
50.
Staniak M., 2016. The impact of drought stress on the yields and food value of selected forage grasses. Acta Agrobot. 69, 1663, https://doi.org/10.5586/aa.166...
 
51.
Staniak M., Harasim E., 2018. Changes in nutritive value of alfalfa (Medicago x varia T. Martyn) and Festulolium (Festulolium braunii (K. Richt.) A. Camus) under drought stress. J. Agron. Crop Sci. 204, 456–466, https://doi.org/10.1111/jac.12...
 
52.
Purwin C., 2007. Quality of the grass and grass-legume silages making by baler technology. (in Polish). Dissertations and Monographs 127. University of Warmia and Mazury Publisher. Olsztyn (Poland)
 
53.
Steen R.W.J., Kilpatrick D.J., 2000. The effects of the ratio of grass silage to concentrates in the diet and restricted dry matter intake on the performance and carcass composition of beef cattle. Livest. Prod. Sci. 62, 181–192, https://doi.org/10.1016/S0301-...
 
54.
Steen R.W.J., Kilpatrick D.J., Porter M.G., 2002. Effects of the proportions of high or medium digestibility grass silage and concentrates in the diet of beef cattle on live weight gain, carcass composition and fatty acid composition of muscle. Grass Forage Sci. 57, 279–291, https://doi.org/10.1046/j.1365...
 
55.
Stepanova G.V., Volovik M.V., 2021. Dependence of the buffer capacity on the chemical composition of dry matter of alfalfa. In: IOP Conference Series: Earth and Environmental Science, 901, 012044. IOP Publishing https://doi.org/10.1088/1755-1...
 
56.
Thorvaldsson G., Tremblay G.F., Kunelius H.T., 2007. The effects of growth temperature on digestibility and fiber concentration of seven temperate grass species. Acta Agric. Scand. B: Soil Plant Sci. 57, 322–328, https://doi.org/10.1080/090647...
 
57.
Van Amburgh M.E., Collao-Saenz E.A., Higgs R.J., Ross D.A., Recktenwald E.B., Raffrenato E., Chase L.E., Overton T.R., Mills J.K., Foskolos A., 2015. The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. J. Dairy Sci. 98, 6361–6380, https://doi.org/10.3168/jds.20...
 
58.
Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597, https://doi.org/10.3168/jds.S0...
 
59.
Weisbjerg M.R., Kristensen N.B., Søegaard K., Thøgersen R., 2012. Effect of forage type on silage fermentation characteristics assessed by vacuum bag ensiling. In: K. Kuoppala., M. Rinne, A. Vanhatalo (Editords.). Proceedings of the XVI International Silage Conference, 60–61. MTT Agrifood Research Finland, Hämeenlinna (Finland)
 
60.
Weissbach F., Auerbach H., 2013. Hay-crop silages and the problem of fermentation quality. Int. Dairy Top. 12, 11–15
 
ISSN:1230-1388
Journals System - logo
Scroll to top