REVIEW PAPER
The application of computer-assisted semen analysis (CASA) technology to optimise semen evaluation. A review
,
 
,
 
 
 
 
More details
Hide details
1
Costa Rica Institute of Technology, School of Agronomy, San Carlos Local Campus 223-21001, Alajuela, Costa Rica
 
2
Costa Rica Institute of Technology. School of Agronomy, San Carlos Local Campus, Costa Rica Institute of Technology, 223-21001, Alajuela, Costa Rica.
 
3
University of Valencia. Department of Cellular Biology, Functional Biology and Physical Anthropology, Campus Burjassot, C/Dr. Moliner, 50, 46100, Paterna, Spain.
 
 
Publication date: 2020-09-30
 
 
Corresponding author
A. Valverde   

Costa Rica Institute of Technology, School of Agronomy, San Carlos Local Campus 223-21001, Alajuela, Costa Rica
 
 
J. Anim. Feed Sci. 2020;29(3):189-198
 
KEYWORDS
TOPICS
ABSTRACT
Currently, artificial insemination (AI) is the most applied technique for assisted reproduction in the livestock industry. The traditional analysis of seminal quality includes the evaluation of concentration and motility (total and progressive), the parameters on which the number of doses producible from an ejaculate is calculated. The introduction of automated sperm evaluation systems based on computer-assisted semen analysis (CASA) represented a revolution in the production of seminal doses and the knowledge in reproductive biology; however, this technology has been generally implemented without a critical analysis of its limitations and dependence on several methodological factors. In addition to the use of CASA technology, the estimation of kinematics and morphometry have been incorporated as novel parameters for sensitivity and reproducibility. AI has facilitated the rapid and universal dissemination of genetic material from a relatively small number of males. The CASA systems allow the analysis of a large number of sperm cells in a short time, thereby providing an array of quantitative data on kinematics and head sperm morphometry, thus making it possible to optimise the reliability of seminal analyses.
ACKNOWLEDGEMENTS
This research was founded by the grant (No FI-097B-14) from the Consejo Nacional para Investigaciones Científicas y Tecnológicas (CONICIT) and Ministerio de Ciencia, Tecnología y Telecomunicaciones (MICITT), Costa Rica. The authors would like to thank the Vice-Chancellor’s office of Research and Extension (Vicerrectoría de Investigación y Extensión) at the Costa Rica Institute of Technology (Project 5402-2151-1013).
 
REFERENCES (94)
1.
Acosta A.A., Kruger T.F. (Editors), 1996. Human Spermatozoa in Assisted Reproduction. Parthenon Publishing Group. New York, NY (USA).
 
2.
Amann R.P., Waberski D., 2014. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 81, 5–17.e3, https://doi.org/10.1016/j.ther....
 
3.
Barszcz K., Wiesetek D., Wasowicz M., Kupczynska M., 2012. Bull semen collection and analysis for artificial insemination. J. Agric. Sci. 4, 1–10, https://doi.org/10.5539/jas.v4....
 
4.
Barth A.D., Bowman P.A., G.A. Bo, Mapletoft R.J., 1992. Effect of narrow sperm head shape on fertility in cattle. Can. Vet. J. 33, 31–39.
 
5.
Beletti M., Costa L., Viana M., 2005. A comparison of morphometric characteristics of sperm from fertile Bos taurus and Bos indicus bulls in Brazil. Anim. Reprod. Sci. 85, 105–116, https://doi.org/10.1016/j.anir....
 
6.
Bompart D., Vázquez R., Gómez R. et al., 2019. Combined effects of type and depth of counting chamber, and rate of image frame capture, on bull sperm motility and kinematics. Anim. Reprod. Sci. 209, 106169, https://doi.org/10.1016/j.anir....
 
7.
Boryshpolets S., Kowalski R.K., Dietrich G.J., Dzyuba B., Ciereszko A., 2013. Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters. Theriogenology 80, 758–765, https://doi.org/10.1016/j.ther....
 
8.
Broekhuijse M.L.W.J., Šoštarić E., Feitsma H., Gadella B.M., 2011. Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology 76, 1473–1486.e1, https://doi.org/10.1016/j.ther....
 
9.
Caldeira C., Hernández-Ibáñez S., Valverde A. et al., 2019. Standardization of sperm motility analysis by using CASA-Mot for Atlantic salmon (Salmo salar), European eel (Anguilla anguilla) and Siberian sturgeon (Acipenser baerii). Aquaculture 502, 223–231, https://doi.org/10.1016/j.aqua....
 
10.
Contri A., Valorz C., Faustini M., Wegher L., Carluccio A., 2010. Effect of semen preparation on casa motility results in cryopreserved bull spermatozoa. Theriogenology 74, 424–435, https://doi.org/10.1016/j.ther....
 
11.
Cucho H., Alarcón V. , Ordóñez C. et al., 2016. Puma (Puma concolor) epididymal sperm morphometry. Asian J. Androl. 18, 879–881, https://doi.org/10.4103/1008-6....
 
12.
Davis R., Rothmann S., Overstreet J., 1992. Accuracy and precision of computer-aided sperm analysis in multicenter studies. Fertil. Steril. 57, 648–653, https://doi.org/10.1016/S0015-....
 
13.
Del Gallego R., Sadeghi S., Blasco E. et al., 2017. Effect of chamber characteristics, loading and analysis time on motility and kinetic variables analysed with the CASA-mot system in goat sperm. Anim. Reprod. Sci. 177, 97–104, https://doi.org/10.1016/j.anir....
 
14.
Didion B.A., 2008. Computer-assisted semen analysis and its utility for profiling boar semen samples. Theriogenology 70, 1374–1376, https://doi.org/10.1016/j.ther....
 
15.
Ehlers J., Behr M., Bollwein H., Beyerbach M., Waberski D., 2011. Standardization of computer-assisted semen analysis using an e-learning application. Theriogenology 76, 448–454, https://doi.org/10.1016/j.ther....
 
16.
Flowers W., 2009. Selection for boar fertility and semen quality-the way ahead. Soc. Reprod. Fertil. Suppl. 66, 66–78.
 
17.
Foote R.H., 2002. The history of artificial insemination: Selected notes and notables. J. Anim. Sci. 80, E-suppl_2, 1–10, https://doi.org/10.2527/animal....
 
18.
Funk D.A., 2006. Major advances in globalization and consolidation of the artificial insemination industry. J. Dairy Sci. 89, 1362–1368, https://doi.org/10.3168/jds.S0....
 
19.
Gadea J., Toledano-Díaz A., Navarro-Serna S. et al., 2019. Assessment and preservation of liquid and frozen-thawed Black crested mangabey (Lophocebus aterrimus) spermatozoa obtained by transrectal ultrasonic-guided massage of the accessory sex glands and electroejaculation. Anim. Reprod. Sci. 210, 106176, https://doi.org/10.1016/j.anir....
 
20.
Gaffney E.A., Gadêlha H., Smith D.J., Blake J.R., Kirkman-Brown J.C., 2011. Mammalian sperm motility: Observation and Theory. Annu. Rev. Fluid Mech. 43, 501–528, https://doi.org/10.1146/annure....
 
21.
Gallagher M.T., Cupples G., Ooi E.H., Kirkman-Brown J.C., Smith D.J., 2019. Rapid sperm capture: high-throughput flagellar waveform analysis. Hum. Reprod. 34, 1173–1185, https://doi.org/10.1093/humrep....
 
22.
Gallagher M.T., Smith D.J., Kirkman-Brown J.C., 2018. CASA: tracking the past and plotting the future. Reprod. Fertil. Dev. 30, 867–874, https://doi.org/10.1071/RD1742....
 
23.
Gallego V., Carneiro P., Mazzeo I., 2013. Standardization of European eel (Anguilla anguilla) sperm motility evaluation by CASA software. Theriogenology 79, 1034–1040, https://doi.org/10.1016/j.ther....
 
24.
Gallego V., Herranz-Jusdado J.G., Rozenfeld C., Pérez L., Asturiano J.F., 2018. Subjective and objective assessment of fish sperm motility: when the technique and technicians matter. Fish Physiol. Biochem. 44, 1457–1467, https://doi.org/10.1007/s10695....
 
25.
García-Herreros M., 2016. Sperm subpopulations in avian species: a comparative study between the rooster (Gallus domesticus) and Guinea fowl (Numida meleagris). Asian J. Androl. 18, 889–894, https://doi.org/10.4103/1008-6....
 
26.
García-Molina A., Valverde A., Bompart D. et al., 2020. Updating semen analysis: a subpopulation approach. Asian J. Androl. 22, 118–119, https://doi.org/10.4103/aja.aj....
 
27.
Gloria A., Carluccio A., Contri A. et al., 2013. The effect of the chamber on kinetic results in cryopreserved bull spermatozoa. Andrology 1, 879–885, https://doi.org/10.1111/j.2047....
 
28.
Gosálvez J., López-Fernández C., Johnston S., 2016. Whole extra-charged DNA spermatozoa in the saltwater crocodile (Crocodylus porosus) ejaculate. Herpetol. J. 26, 313–316.
 
29.
Hernández-Caravaca I., Llamas-López P.J., Izquierdo-Rico M.J. et al., 2017. Optimization of post-cervical artificial insemination in gilts: Effect of cervical relaxation procedures and catheter type. Theriogenology 90, 147–152, https://doi.org/10.1016/j.ther....
 
30.
Hidalgo M., Rodríguez I., Dorado J., 2006. Influence of staining and sampling procedures on goat sperm morphometry using the Sperm Class Analyzer. Theriogenology 66, 996–1003, https://doi.org/10.1016/j.ther....
 
31.
Hidalgo M., Rodriguez I., Dorado J., Sanz J., Soler C., 2005. Effect of sample size and staining methods on stallion sperm morphometry by the Sperm Class Analyzer. Vet. Med. (Praha). 50, 24–32, https://doi.org/10.17221/5593-....
 
32.
Hoogewijs M.K., De Vliegher S.P., Govaere J.L. et al., 2012. Influence of counting chamber type on CASA outcomes of equine semen analysis. Equine Vet. J. 44, 542–549, https://doi.org/10.1111/j.2042....
 
33.
Howley P., Donoghue C.O., Heanue K., 2012. Factors Affecting Farmers΄ adoption of agricultural innovations: a panel data analysis of the use of artificial insemination among dairy farmers in Ireland. J. Agric. Sci. 4, p. 171, https://doi.org/10.5539/jas.v4....
 
34.
Ibănescu I., Leiding C., Bollwein H., 2018. Cluster analysis reveals seasonal variation of sperm subpopulations in extended boar semen. J. Reprod. Dev. 64, 33–39, https://doi.org/10.1262/jrd.20....
 
35.
Ibanescu I., Siuda M., Bollwein H., 2020. Motile sperm subpopulations in bull semen using different clustering approaches - Associations with flow cytometric sperm characteristics and fertility. Anim. Reprod. Sci. 215, 106329, https://doi.org/10.1016/j.anir....
 
36.
Immler S., Pryke S.R., Birkhead T.R., Griffith S.C., 2010. Pronounced within-individual plasticity in sperm morphometry across social environments. Evolution (NY). 64, 1634–1643, https://doi.org/10.1111/j.1558....
 
37.
Jansen R.P., Bajpai V.K., 1982. Oviduct acid mucus glycoproteins in the estrous rabbit: ultrastructure and histochemistry. Biol. Reprod. 26, 155–168, https://doi.org/10.1095/biolre....
 
38.
Johnson L.A., Weitze K.F., Fiser P., Maxwell W.M., 2000. Storage of boar semen. Anim. Reprod. Sci. 62, 143–72, https://doi.org/10.1016/S0378-....
 
39.
Kay V.J., Robertson L., 1998. Hyperactivated motility of human spermatozoa: a review of physiological function and application in assisted reproduction. Hum. Reprod. Update 4, 776–786, https://doi.org/10.1093/humupd....
 
40.
Knox R.V., 2016. Artificial insemination in pigs today. Theriogenology 85, 83–93, https://doi.org/10.1016/j.ther....
 
41.
Lavara R., Vicente J.S., Baselga M., 2013. Genetic variation in head morphometry of rabbit sperm. Theriogenology 80, 313–318, https://doi.org/10.1016/j.ther....
 
42.
Lenz R.W., Kjelland M.E., VonderHaar K., Swannack T.M., Moreno J.F., 2011. A comparison of bovine seminal quality assessments using different viewing chambers with a computer-assisted semen analyzer. J. Anim. Sci. 89, 383–388, https://doi.org/10.2527/jas.20....
 
43.
Martí J.I., Aparicio I.M., García-Herreros M., 2011. Head morphometric changes in cryopreserved ram spermatozoa are related to sexual maturity. Theriogenology 75, 473–481, https://doi.org/10.1016/j.ther....
 
44.
Martínez-Pastor F., Tizado E., Garde J., Anel L., de Paz P., 2011. Statistical Series: Opportunities and challenges of sperm motility subpopulation analysis. Theriogenology 75, 783–795, https://doi.org/10.1016/j.ther....
 
45.
Menegassi S.R.O., Barcellos J.O.J., Dias E.A. et al., 2015. Scrotal infrared digital thermography as a predictor of seasonal effects on sperm traits in Braford bulls. Int. J. Biometeorol. 59, 357–364, https://doi.org/10.1007/s00484....
 
46.
Morris A.R., Coutts J.R., Robertson L., 1996. A detailed study of the effect of videoframe rates of 25, 30 and 60 Hertz on human sperm movement characteristics. Hum. Reprod. 11, 304–310, https://doi.org/10.1093/HUMREP....
 
47.
Mortimer S., 1997. A critical review of the physiological importance and analysis of sperm movement in mammals. Hum. Reprod. Update 3, 403–439, https://doi.org/10.1093/humupd....
 
48.
Murphy C., Fahey A.G., Shafat A., Fair S., 2013. Reducing sperm concentration is critical to limiting the oxidative stress challenge in liquid bull semen. J. Dairy Sci. 96, 4447–4454, https://doi.org/10.3168/jds.20....
 
49.
Nöthling J.O., dos Santos I.P., 2012. Which fields under a coverslip should one assess to estimate sperm motility? Theriogenology 77, 1686–1697, https://doi.org/10.1016/j.ther....
 
50.
Palacín I., Vicente-Fiel S., Santolaria P., Yániz J., 2013. Standardization of CASA sperm motility assessment in the ram. Small Rumin. Res. 112, 128–135, https://doi.org/10.1016/j.smal...  .
 
51.
Palmer C.W., Amundson S.D., Brito L.F.C., Waldner C.L., Barth A.D., 2004. Use of oxytocin and cloprostenol to facilitate semen collection by electroejaculation or transrectal massage in bulls. Anim. Reprod. Sci. 80, 213–22, https://doi.org/10.1016/j.anir....
 
52.
Peng N., Zou X., Li L., 2015. Comparison of different counting chambers using a computer-assisted semen analyzer. Syst. Biol. Reprod. Med. 61, 307–313, https://doi.org/10.3109/193963....
 
53.
Quintero-Moreno A., Rigau T., Rodríguez-Gil J.E., 2004. Regression analyses and motile sperm subpopulation structure study as improving tools in boar semen quality analysis. Theriogenology 61, 673–690, https://doi.org/10.1016/S0093-....
 
54.
Rijsselaere T., Van Soom A., Maes D., de Kruif A., 2003. Effect of technical settings on canine semen motility parameters measured by the Hamilton-Thorne analyzer. Theriogenology 60, 1553–1568, https://doi.org/10.1016/S0093-....
 
55.
Sánchez M.V., Bastir M., Roldan E.R.S., 2013. Geometric Morphometrics of Rodent Sperm Head Shape. PLoS ONE 8, e80607, https://doi.org/10.1371/journa....
 
56.
Sancho M., Pérez-Sánchez F., Tablado L., De Monserrat J.J., Soler C., 1998. Computer assisted morphometric analysis of ram sperm heads: Evaluation of different fixative techniques. Theriogenology 50, 27–37, https://doi.org/10.1016/S0093-....
 
57.
Saravia F., Núñez-Martínez I., Morán J. et al., 2007. Differences in boar sperm head shape and dimensions recorded by computer-assisted sperm morphometry are not related to chromatin integrity. Theriogenology 68, 196–203, https://doi.org/10.1016/j.ther....
 
58.
Shi L., Nascimento J., Berns M., Botvinick E., 2006. Computer-based tracking of single sperm. J. Biomed. Opt. 11, 054009, https://doi.org/10.1117/1.2357....
 
59.
Simonik O., Sichtar J., Krejcarkova A. et al., 2015. Computer assisted sperm analysis - the relationship to bull field fertility, possible errors and their impact on outputs: a review. Indian J. Anim. Sci. 85, 3–1.
 
60.
Soler C., Gadea B., Soler A. et al., 2005a. Comparison of three different staining methods for the assessment of epididymal red deer spem morphometry by computerized analysis with ISAS®. Theriogenology 64, 1236–1243, https://doi.org/10.1016/j.ther....
 
61.
Soler C., García-Molina A., Contell J., Silvestre M., Sancho M., 2015. The Trumorph® system: The new universal technique for the observation and analysis of the morphology of living sperm. Anim. Reprod. Sci. 158, 1–10, https://doi.org/10.1016/j.anir....
 
62.
Soler C., García-Molina A., Sancho M. et al., 2016. A new technique for analysis of human sperm morphology in unstained cells from raw semen. Reprod. Fertil. Dev. 28, 428. https://doi.org/10.1071/RD1408...
 
63.
Soler C., García A., Contell J., Segervall J., Sancho M., 2014a. Kinematics and subpopulations’ structure definition of blue fox (Alopex lagopus) sperm motility using the ISAS® V1 CASA System. Reprod. Domest. Anim. 49, 560–567, https://doi.org/10.1111/rda.12....
 
64.
Soler C., Gaßner P., Nieschlag E. et al., 2005b. Use of the integrated semen analysis system(ISAS®) for morphometric analysis and its role in assisted reproduction technologies (in Spanish). Rev. Int. Andrología 3, 112–119, https://doi.org/10.1016/S1698-....
 
65.
Soler C., Picazo-Bueno J., Micó V. et al., 2018. Effect of counting chamber depth on the accuracy of lensless microscopy for the assessment of boar sperm motility. Reprod. Fertil. Dev. 30, 924–934, https://doi.org/10.1071/RD1746....
 
66.
Soler C., Sancho M., García-Molina A. et al., 2014b. Llama and alpaca comparative sperm head morphometric analysis. J. Camelid Sci. 7, 48–58.
 
67.
Soler C., Sancho M., García A. et al., 2014c. Ejaculate fractioning effect on llama sperm head morphometry as assessed by the ISAS® CASA system. Reprod. Domest. Anim. 49, 71–78, https://doi.org/10.1111/rda.12....
 
68.
Soler C., Valverde A., Bompart D. et al., 2017. New methods of semen analysis by casa. Sel’skokhozyaistvennaya Biol. Agricultural Biol. 52, 232–241, https://doi.org/10.15389/agrob....
 
69.
Sztein J.M., Takeo T., Nakagata N., 2018. History of cryobiology, with special emphasis in evolution of mouse sperm cryopreservation. Cryobiology 82, 57–63, https://doi.org/10.1016/j.cryo....
 
70.
Tejerina F., Buranaamnuay K., Saravia F., Wallgren M., Rodriguez-Martinez H., 2008. Assessment of motility of ejaculated, liquid-stored boar spermatozoa using computerized instruments. Theriogenology 69, 1129–1138, https://doi.org/10.1016/j.ther....
 
71.
Thurston R.J., Hess R.A., 1987. Ultrastructure of spermatozoa from domesticated birds: comparative study of turkey, chicken and guinea fowl. Scanning Microsc. 1,1829–1838 .
 
72.
Valverde A., Areán H., Fernández A. et al., 2019a. Combined effect of type and capture area of counting chamber and diluent on Holstein bull sperm kinematics. Andrologia 51, e13223, https://doi.org/10.1111/and.13...  .
 
73.
Valverde A., Arenán H., Sancho M., 2016. Morphometry and subpopulation structure of Holstein bull spermatozoa: variations in ejaculates and cryopreservation straws. Asian J. Androl. 18, 851–857, https://doi.org/10.4103/1008-6....
 
74.
Valverde A., Madrigal-Valverde M., 2019. Assessment of counting chambers on boar sperm parameters analyzed by a CASA-Mot system (in Spanish). Agron. Mesoam. 30, 447–458, https://doi.org/10.15517/am.v3....
 
75.
Valverde A., Madrigal-Valverde M., Caldeira C. et al., 2019b. Effect of frame rate capture frequency on sperm kinematic parameters and subpopulation structure definition in boars, analyzed with a CASA-Mot system. Reprod. Domest. Anim. 54, 167–175, https://doi.org/10.1111/rda.13....
 
76.
Valverde A., Madrigal-Valverde M., Camacho-Calvo M., Zambrana-Jiménez A., López L., 2018. Epidemiological aspects of Cryptosporidium spp. in calves of Tachira State in Venezuela (in Spanish). Agron. Mesoam. 29, 485, https://doi.org/10.15517/ma.v2....
 
77.
Valverde A., Madrigal-Valverde M., Castro-Morales O. et al., 2019c. Kinematic and head morphometric characterisation of spermatozoa from the Brown Caiman (Caiman crocodilus fuscus). Anim. Reprod. Sci. 207, 9–20, https://doi.org/10.1016/j.anir....
 
78.
Valverde A., Madrigal-Valverde M., Lotz J., Bompart D., Soler C., 2019d. Effect of video capture time on sperm kinematic parameters in breeding boars. Livest. Sci. 220, 52–56, https://doi.org/10.1016/j.livs....
 
79.
Vasquez F., Soler C., Camps P., Valverde A., Bustos-Obregón E. et al. 2016. Spermiogram and sperm head morphometry assessed by the multivariate cluster analysis results during adolescence (12-18 years) and the effect of varicocele. Asian J. Androl. 18, 824–830, https://doi.org/10.4103/1008-6....
 
80.
Verstegen J., Iguer-Ouada M., Onclin K., 2002. Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 57, 149–179, https://doi.org/10.1016/S0093-....
 
81.
Vesseur P.C., Kemp B., Den Hartog L.A., 1996. Factors influencing the proportion of offspring from a second insemination in sows. Anim. Reprod. Sci. 41, 255–265, https://doi.org/10.1016/0378-4....
 
82.
Vicente-Fiel S., Palacín I., Santolaria P. et al., 2013. A comparative study of the sperm nuclear morphometry in cattle, goat, sheep, and pigs using a new computer-assisted method (CASMA-F). Theriogenology 79, 436–442, https://doi.org/10.1016/j.ther....
 
83.
Villaverde-Morcillo S., Soler A., Esteso M.C. et al., 2017. Immature and mature sperm morphometry in fresh and frozen-thawed falcon ejaculates. Theriogenology 98, 94–100, https://doi.org/10.1016/j.ther....
 
84.
Víquez L., Barquero V., Soler C., Roldan E.R.S., Valverde A., 2020. Kinematic sub-populations in bull spermatozoa: a comparison of classical and bayesian approaches. Biology (Basel) 9, 138, https://doi.org/10.3390/biolog....
 
85.
Vishwanath R., Shannon P., 1997. Do sperm cells age? A review of the physiological changes in sperm during storage at ambient temperature. Reprod. Fertil. Dev. 9, 321–331, https://doi.org/10.1071/R96088.
 
86.
Wilson-Leedy J.G., Ingermann R.L., 2007. Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology 67, 661–672, https://doi.org/10.1016/j.ther....
 
87.
Yan W., Kanno C., Oshima E. et al., 2017. Enhancement of sperm motility and viability by turmeric by-product dietary supplementation in roosters. Anim. Reprod. Sci. 185, 195–204, https://doi.org/10.1016/j.anir....
 
88.
Yániz J., Capistrós S., Vicente-Fiel S., Hidalgo C.O., Santolaria P., 2016. A comparative study of the morphometry of sperm head components in cattle, sheep, and pigs with a computer-assisted fluorescence method. Asian J. Androl. 18, 840–843, https://doi.org/10.4103/1008-6....
 
89.
Yániz J., Silvestre M., Santolaria P., Soler C., 2018. CASA-Mot in mammals: an update. Reprod. Fertil. Dev. 30, 799–809, https://doi.org/10.1071/RD1743....
 
90.
Yániz J., Soler C., Santolaria P., 2015. Computer assisted sperm morphometry in mammals: A review. Anim. Reprod. Sci. 156, 1–12, https://doi.org/10.1016/j.anir....
 
91.
Yeste M., 2016. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 85, https://doi.org/10.1016/j.ther....
 
92.
Yeste M., Bonet S., Rodríguez-Gil J.E., Rivera Del Álamo M.M., 2018. Evaluation of sperm motility with CASA-Mot: which factors may influence our measurements? Reprod. Fertil. Dev. 30, 789–798, https://doi.org/10.1071/RD1747....
 
93.
Zhao Y., Vlahos N., Wyncott D. et al., 2004. Impact of semen characteristics on the success of intrauterine insemination. J. Assist. Reprod. Genet. 21, 143–148, https://doi.org/10.1023/B:JARG....
 
94.
Zou C.X., Yang Z.M., 2000. Evaluation on sperm quality of freshly ejaculated boar semen during in vitro storage under different temperatures. Theriogenology 53, 1477–1488, https://doi.org/10.1016/S0093-....
 
 
CITATIONS (6):
1.
A Bayesian analysis of boar spermatozoa kinematics and head morphometrics and their relationship with litter size fertility variables
Vinicio Barquero, Carles Soler, Francisco Sevilla, Josué Calderón‐Calderón, Anthony Valverde
Reproduction in Domestic Animals
 
2.
Influence of Fat-Soluble Vitamin Intramuscular Supplementation on Kinematic and Morphometric Sperm Parameters of Boar Ejaculates
Josué Calderón-Calderón, Francisco Sevilla, Eduardo Roldan, Vinicio Barquero, Anthony Valverde
Frontiers in Veterinary Science
 
3.
Are There Differences between Methods Used for the Objective Estimation of Boar Sperm Concentration and Motility?
Francisco Sevilla, Carles Soler, Ignacio Araya-Zúñiga, Vinicio Barquero, Eduardo Roldan, Anthony Valverde
Animals
 
4.
Evaluation of sperm and hormonal assessments in Wagyu, Nellore, and Angus bulls
A. Moura, A. Santos, J. Losano, A. Siqueira, T. Hamilton, R. Zanella, K. Caires, R. Simões
Zygote
 
5.
Morphometric assessment of cryopreserved livestock bull spermatozoa in the tropics
Luis Víquez, Francisco Sevilla, Ignacio Araya‐Zúñiga, Carles Soler, Vinicio Barquero, Eduardo Roldan, Anthony Valverde
Reproduction in Domestic Animals
 
6.
Exploration of semen quality analyzed by casa-mot systems of brahman bulls infected with BLV and BHV-1
Derling Pichardo-Matamoros, Francisco Sevilla, Jorge Elizondo-Salazar, Carlos Jiménez-Sánchez, Eduardo Roldan, Carles Soler, Sabrina Gacem, Anthony Valverde
Scientific Reports
 
ISSN:1230-1388
Journals System - logo
Scroll to top