1. |
Alugongo G.M., Xiao J., Wu Z., LiI S., Wang Y., Cao Z., 2017. Review: Utilization of yeast of Saccharomyces cerevisiae origin in artificially raised calves. J. Anim. Sci. Biotech. 8, E34–E34, https://doi.org/10.1186/s40104....
|
2. |
Baynes R.E., Dedonder K., Kissell L., Mzyk D., Marmulak T., Smith G., Tell L., Gehring R., Davis J., Riviere J.E., 2016. Health concerns and management of select veterinary drug residues. Food Chem. Toxicol. 88, 112–122, http://doi.org/10.1016/j.fct.2....
|
3. |
Canibe N., Højberg O., Badsberg J.H., Jensen B.B., 2007. Effect of feeding fermented liquid feed and fermented grain on gastrointestinal ecology and growth performance in piglets. J. Anim. Sci. 85, 2959–2971, https://doi.org/10.2527/jas.20....
|
4. |
Cho Y.I., Yoon K.J., 2014. An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. J. Vet. Sci. 15, 1–17, http://dx.doi.org/10.4142/jvs.....
|
5. |
Cui K., Lv X., Diao Q., Zhang N., 2019. Effects of dietary supplementation with Bacillus subtilis and yeast culture on growth performance, nutrient digestibility, serum indices and faeces microbiota of weaned piglets. J. Anim. Feed Sci. 28, 328–336, https://doi.org/10.22358/jafs/....
|
6. |
Dai Z.L., Wu G., Zhu W.Y., 2011. Amino acid metabolism in intestinal bacteria: Links between gut ecology and host health. Front. Biosci. 16, 1768–1786, https://doi.org/10.1093/molehr....
|
7. |
Fomenky B.E., Chiquette J., Bissonnette N., Talbot G., Chouinard Y.P., Ibeagha-Awemu E.M., 2017. Impact of Saccharomyces cerevisiae boulardii CNCMI-1079 and Lactobacillus acidophilus BT1386 on total lactobacilli population in the gastrointestinal tract and colon histomorphology of Holstein dairy calves. Anim Feed Sci. Tech. 234, 151–161, https://doi.org/10.1016/j.anif....
|
8. |
Gong Y.L., Liang J.B., Jahromi M.F., Wu Y.B., Wright A.G., Liao X.D., 2018. Mode of action of Saccharomyces cerevisiae in enteric methane mitigation in pigs. Animal 12, 239–245, https://doi.org/10.1017/S17517....
|
9. |
Loh T.C., Thu T.V., Foo H.L., Bejo M.H., 2013. Effects of different levels of metabolite combination produced by Lactobacillus plantarum on growth performance, diarrhoea, gut environment and digestibility of postweaning piglets. J. Appl. Anim. Res. 41, 200–207, https://doi.org/10.1080/097121....
|
10. |
Martín R., Langella P., 2019. Emerging health concepts in the probiotics field: Streamlining the definitions. Front. Microbiol. 10, 1047–1047, https://doi.org/10.3389/fmicb.....
|
11. |
Mathew A.G., Chattin S.E., Robbins C.M., Golden D.A., 1998. Effects of a direct-fed yeast culture on enteric microbial populations, fermentation acids, and performance of weanling pigs. J. Anim. Sci. 76, 2138–2145, https://doi.org/10.2527/1998.7....
|
12. |
Mathipa M.G., Thantsha M.S., 2017. Probiotic engineering: Towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut Pathog. 9, 1–17, https://doi.org/10.1186/s13099....
|
13. |
Poulsen A.R., Jonge N., Nielsen J.L., Hojberg O., Lauridsen C., Cutting S.M., Canibe N., 2018. Impact of Bacillus spp. spores and gentamicin on the gastrointestinal microbiota of suckling and newly weaned piglets. PLoS One 13, e0207382, https://doi.org/10.1371/journa....
|
14. |
Schwaiger K., Storch J., Bauer C., Bauer J., 2020. Development of selected bacterial groups of the rectal microbiota of healthy calves during the first week postpartum. J. Appl. Microbiol. 128, 366–375, https://doi.org/10.1111/jam.14....
|
15. |
Steidlová Š., Kalač P., 2002. Levels of biogenic amines in maize silages. Anim. Feed Sci. Tech. 102, 197–205, https://doi.org/10.1016/S0377-....
|
16. |
Thorsteinsson M., Vestergaard M., 2020. Performance and health of young rosé veal calves supplemented with yeast (Saccharomyces cerevisiae) and a postbiotic from Lactobacillus acidophilus. J. Anim. Feed Sci. 29, 115–124, https://doi.org/10.22358/jafs/....
|
17. |
Thu T.V., Loh T.C., Foo H.L., Yaakub H., Bejo M.H., 2011. Effects of liquid metabolite combinations produced by Lactobacillus plantarum on growth performance, faeces characteristics, intestinal morphology and diarrhoea incidence in postweaning piglets. Trop. Anim. Health Prod. 43, 69–75, https://doi.org/10.1007/s11250....
|
18. |
Trckova M., Faldyna M., Alexa P., Zajacova Z.S., Gopfert E., Kumprechtova D., Auclair E., D'Inca R., 2014. The effects of live yeast Saccharomyces cerevisiae on postweaning diarrhea, immune response, and growth performance in weaned piglets. J. Anim. Sci. 92, 767–774, https://doi.org/10.2527/jas.20....
|
19. |
Tsai T.C., Kim H.J., Wang X., Bass B.E., Frank J.W., Maxwell C.V., 2016. Effect of Saccharomyces cerevisiae fermentation product supplementation in late gestation and lactation on sow and litter performance, milk components, and fecal Clostridium perfringens. J. Anim. Sci. 94, 134–134, https://doi.org/10.2527/msasas....
|
20. |
Wegh C.A.M., Geerlings S.Y., Knol J., Roeselers G., Belzer C., 2019. Postbiotics and their potential applications in early life nutrition and beyond. Int. J. Mol. Sci. 20, e4673, https://doi.org/10.3390/ijms20....
|
21. |
Williams N.T., 2010. Probiotics. Am. J. Health-Syst. Pharm. 67, 449–458, https://doi.org/10.2146/ajhp09....
|
22. |
Zhu C., Wang L., Wei S., Chen Z., Ma X., Zheng C., Jiang Z., 2017. Effect of yeast Saccharomyces cerevisiae supplementation on serum antioxidant capacity, mucosal sIgA secretions and gut microbial populations in weaned piglets. J. Integr. Agri. 16, 2029–2037, https://doi.org/10.1016/S2095-....
|