ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
The aim of this study was to test chicken manure as duckweed (Lemna minor) fertiliser. Duckweed was grown using three different concentrations (low, medium and high; dilution factors 1:16, 1:12 and 1:8, respectively) of previously solubilised chicken manure. Subsequently, duckweed was evaluated for its fresh and dry biomass production, protein content and protein production capacity. Ammonium-nitrogen (NH4-N) concentrations increased in all substrates during an experimental week, with the increase being steeper in the treatments with higher chicken manure concentrations. However, duckweed populations were unable to fully utilise all the provided nitrogen. As the concentration of chicken manure increased, growth and protein production decreased. Adding the highest concentration of chicken manure (1:8 dilution) led to nearly complete die-off of the duckweed population. The low concentrated (1:16 dilution) chicken manure fertilisation resulted in acceptable growth (1.85 g dry matter (DM) per m2 and day) and high crude protein content (42.8% DM). The medium concentration (1:12 dilution) of chicken manure still stimulated growth, although it was significantly lower compared to duckweed grown on the low concentrated poultry manure and declined towards the end of the experiment (0.88 g DM per m2 and day). The biomass from this treatment also contained slightly lower protein content (40.6% DM). Duckweed cultivated using low and medium chicken manure concentrations produced an average of 0.79 and 0.36 g protein per m2 and day, respectively. Although solubilised chicken manure can serve as a potential fertiliser for duckweed, balancing the amount of chicken manure necessary to obtain a target NH4-N concentration when compared to cow or pig slurries is challenging.
FUNDING
We thank the Mercator Foundation Switzerland and the Vontobel Foundation for the financial support of this project.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
 
REFERENCES (43)
1.
Amali E.I., Ofojekwu P.C., Wade J.W., Ejike C., 1999. Studies on the biomass yield of duckweed (Lemna minor L.) in hydroponic cultures containing different concentrations of aqueous extract of chicken manure. 13th Annual Conference of the Fisheries Society of Nigeria (FISON), https://aquadocs.org/handle/18....
 
2.
Awuah E., Oppong-Peprah M., Lubberding H.J., Gijzen H.J., 2004. Comparative performance studies of water lettuce, duckweed, and algal-based stabilization ponds using low- strength sewage. J. Toxicol. Env. Health Part A 67, 1727–1739, https://doi.org/10.1080/152873....
 
3.
Bog M., Appenroth K.-J., Sree K.S., 2019. Duckweed (Lemnaceae): Its molecular taxonomy. Front. Sustain. Food Syst. 3,117, https://doi.org/10.3389/fsufs.....
 
4.
Bonomo L., Pastorelli G., Zambon N., 1997. Advantages and limitations of Duckweed-based Wastewater treatment system. Water Sci. Tech. 35, 239–246, https://doi.org/10.1016/S0273-....
 
5.
Cheng J., Bergmann B.A. Classen J.J., Stomp A.M. Howard, J.W., 2002. Nutrient recovery from swine lagoon water by Spirodela punctata. Bioresource Technol. 81, 81–85, https://doi.org/10.1016/S0960-....
 
6.
De Morais M.B., Barbosa-Neto A.G., Willadino L., Ulisses C., Tercilio Junior C., 2019. Salt stress induces increase in starch accumulation in duckweed (Lemna aequinoctialis, Lemnaceae): Biochemical and physiological aspects. J. Plant Growth Regul. 38, 683–700, https://doi.org/10.1007/s00344....
 
7.
Devlamynck R., de Souza M.F., Michels M., Sigurnjak I., Donoso N., Coudron C., Leenknegt J., Vermeir P., Eeckhout M., Meers E., 2021. Agronomic and environmental performance of Lemna minor cultivated on agricultural wastewater streams - A practical approach. Sustainability 13, 1570, https://doi.org/10.3390/su1303....
 
8.
Emerson K., Russo R.C., Lund R.E., Thurston R.V., 1975. Aqueous ammonia equilibrium calculations: Effect of pH and temperature. J. Fish. Res. Board Can. 32, 2379–2383, https://doi.org/10.1139/f75-27....
 
9.
Gena F., dan Sumarsono K., 2013. Growth and production of lesser duckweed (Lemna minor) in different manure solutions and concentrations. Anim. Agri. J. 2, 428–438, https://ejournal3.undip.ac.id/....
 
10.
Ghosh M., Chattopadhyay N.R., 2005. Effects of carbon/nitrogen/phosphorous ratio on mineralizing bacterial population in aquaculture systems. J. Appl. Aquac. 17, 85–98, https://doi.org/10.1300/J028v1....
 
11.
Goss M.J., Tubeileh A., Goorahoo D., 2013. Chapter Five - A review of the use of organic amendments and the risk to human health. Adv. Agron. 120, 275–379, https://doi.org/10.1016/B978-0....
 
12.
Green B.W., 2022. Fertilizer use in aquaculture. In: Feed and Feeding Practices in Aquaculture. Davis D.A. (Editor) Woodhead Publishing, https://doi.org/10.1016/B978-0....
 
13.
Haustein A.T., Gilman R.H., Skillicorn P.W., Vergara V., Guevara V., Gastanaduy A., 1990. Duckweed, a useful strategy for feeding chickens: Performance of layers fed with sewage-grown Lemnacea species. Poultry Sci. 69, 1835–1844, https://doi.org/10.3382/ps.069....
 
14.
Janczak D., Malińska K., Czekała W., Cáceres R., Lewicki A., Dach J., 2017. Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw. Waste Manage. 66, 36–45, https://doi.org/10.1016/j.wasm....
 
15.
Körner S., Das S.K., Veenstra S., Vermaat J.E., 2001. The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba. Aquat. Bot. 71, 71–78, https://doi.org/10.1016/S0304-....
 
16.
Kupper T., Häni C., Neftel A., Kincaid C., Bühler M., Amon B., VanderZaag A., 2020. Ammonia and greenhouse gas emissions from slurry storage – A review. Agr. Ecosyst. Environ. 300, 106963, https://doi.org/10.1016/j.agee....
 
17.
Lambert M., Devlamynck R., de Souza M.F., Leenknegt J., Raes K., Eeckhout M., Meers E., 2021. The impact of salt accumulation on the growth of duckweed in a continuous system for pig manure treatment. Plants 11, https://doi.org/10.3390/plants....
 
18.
Leip A., Billen G., Garnier J. et al., 2015. Impacts of European livestock production: Nitrogen, sulphur, phosphorous, greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 10, 115004, https://doi.org/10.1088/1748-9....
 
19.
Leger D., Matassa S., Noor E., Shepon A., Milo R., Bar-Even A., 2021. Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops. PNAS 118, e2015025118, https://doi.org/10.1073/pnas.2....
 
20.
Leng R.A., Stambolie J.H., Bell R., 1995. Duckweed – a potential high-protein feed resource for domestic animals and fish. Livest. Res. Rural Dev. 7, http://www.lrrd.org/lrrd7/1/3.....
 
21.
Li-Xian Y., Guo-Liang L., Shi-Hua T., Gavin S., Zhao-Huan H., 2007. Salinity of animal manure and potential risk of secondary soil salinization through successive manure application. Sci. Total Environ. 383, 106–114, https://doi.org/10.1016/j.scit....
 
22.
Lori M., Symanczik S., Mäder P., Efosa N., Jaenicke S., Buegger F., Tresch S., Goesmann A., Gattinger A., 2018. Distinct nitrogen provisioning from organic amendments in soil as influenced by farming system and water regime. Front. Environ. Sci. 6, https://doi.org/10.3389/fenvs.....
 
23.
Loyon L., 2017. Overview of manure treatment in France. Waste Manage. 61, 516–520, https://doi.org/10.1016/j.wasm....
 
24.
Mallin M.A., McIver M.R., Robuck A.R., Dickens A.K., 2015. Industrial swine and poultry production causes chronic nutrient and fecal microbial stream pollution. Water Air Soil Pollut. 226, https://doi.org/10.1007/s11270....
 
25.
Mbagwu I.G., Adeniji H.A., 1988. The nutritional content of Duckweed (Lemna paucicostata Hegelm.) in the Kainji Lake area, Nigeria. Aquat. Bot. 29, 357–366, https://doi.org/10.1016/0304-3...
 
26.
Mestayer C.R., Culley Jr. D.D., Standifer L.C., Koonce K.L., 1984. Solar energy conversion efficiency and growth aspects of the duckweed, Spirodela punctata (G.F.W. Mey.) Thompson. Aquat. Bot. 19, 157–170, https://doi.org/10.1016/0304-3...
 
27.
Murakami K., Hara M., Kondo T., Hashimoto Y., 2011. Increased total nitrogen content of poultry manure by decreasing water content through composting processes. Soil Sci. Plant Nutr. 57, 705–709, http://dx.doi.org/10.1080/0038....
 
28.
Ndegwa P.M., Hristov A.N., Arogo J., Sheffield, R.E., 2008. A review of ammonia emission mitigation techniques for concentrated animal feeding operations. Biosyst. Eng. 100, 453–469, https://doi.org/10.1016/j.bios....
 
29.
Oron G., Porath D., Jansen H. 1987. Performance of the duckweed species Lemna gibba on municipal wastewater for effluent renovation and protein production. Biotechnol. Bioeng. 29, 258–268, https://doi.org/10.1002/bit.26....
 
30.
Prado J., Ribeiro H., Alvarenga P., Fangueiro D., 2022. A step towards the production of manure-based fertilizers: Disclosing the effects of animal species and slurry treatment on their nutrients content and availability. J. Clean. Prod. 337, 130369, https://doi.org/10.1016/j.jcle....
 
31.
Sońta M., Rekiel A., Batorska M., 2019. Use of duckweed (Lemna L.) in sustainable livestock production and aquaculture – a review. Ann. Anim. Sci. 19, 257–271, https://doi.org/10.2478/aoas-2....
 
32.
Sree K.S., Adelmann K., Garcia C., Lam E., Appenroth K.-J., 2015. Natural variance in salt tolerance and induction of starch accumulation in duckweeds. Planta 241, 1395–1404, https://doi.org/10.1007/s00425....
 
33.
Stadtlander T., Förster S., Rosskothen D., Leiber F., 2019. Slurry-grown duckweed (Spirodela polyrhiza) as a means to recycle nitrogen into feed for rainbow trout fry. J. Clean. Prod. 228, 86–93, https://doi.org/10.1016/j.jcle....
 
34.
Stadtlander T., Bandy J., Rosskothen D., Pietsch C., Tschudi F., Sigrist M., Seitz A., Leiber F. 2022. Dilution rates of cattle slurry affect ammonia uptake and protein production of duckweed grown in recirculating systems. J. Clean. Prod. 357, 131916, https://doi.org/10.1016/j.jcle....
 
35.
Stadtlander T., Tschudi F., Seitz A., Sigrist M., Refardt D., Leiber F., 2023. Partial replacement of fishmeal with duckweed (Spirodela polyrhiza) in feed for two carnivorous fish species, Eurasian perch (Perca fluviatilis) and rainbow trout (Oncorhynchus mykiss). Aquac. Res. 2023, https://doi.org/10.1155/2023/6....
 
36.
Rojas O.J., Liu Y., Stein H.H., 2014. Concentration of metabolizable energy and digestibility of energy, phosphorus, and amino acids in lemna protein concentrate fed to growing pigs. J. Anim. Sci. 92, 5222–5229, https://doi.org/10.2527/jas.20....
 
37.
Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten, 1976. Methode 6.1.1. Bestimmung der Rohfaser, in: Das VDLUFA-Methodenbuch, Band III, Die Chemische Untersuchung von Futtermitteln. VDLUFA Verlag, Darmstadt, Germany.
 
38.
Van Grinsven H.J.M., Holland M., Jacobsen B.H., Klimont Z., Sutton M., Willems W.J., 2013. Costs and benefits of nitrogen for Europe and implications for mitigation. Environ. Sci. Technol. 47, 3571−3579, https://doi.org/10.1021/es3038....
 
39.
Walton N.R.G., 1989. Electrical conductivity and total dissolved solids - what is their precise relationship? Desalination 72, 275-292, https://doi.org/10.1016/0011-9....
 
40.
Willems, O.W., Miller, S.P., Wood, B.J., 2013. Aspects of selection for feed efficiency in meat producing poultry. Worlds Poult. Sci. J. 69, 77–88. https://doi.org/10.1017/S00439....
 
41.
Xu J., Shen G., 2011. Growing duckweed in swine wastewater for nutrient recovery and biomass production. Biores. Technol. 102, 848–853. https://doi.org/10.1016/j.bior....
 
42.
Xu J., Cheng J.J., Stomp A.-M., 2012. Growing Spirodela polyrrhiza in swine wastewater for the production of animal feed and fuel ethanol: A pilot study. Clean – Soil Air Water 40, 760–765, https://doi.org/10.1002/clen.2....
 
43.
Ziegler P., Adelmann K., Zimmer S., Schmidt C., Appenroth K.-J., 2014. Relative in vitro growth rates of duckweeds (Lemnaceae) – the most rapidly growing higher plants. Plant Biol. 17, 33–41, https://doi.org/10.1111/plb.12....
 
ISSN:1230-1388
Journals System - logo
Scroll to top