ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
This study evaluated the effect of 25-hydroxycholecalciferol (25-hydroxyvitamin D3 , 25-OH-D3) on growth rate, femur calcium (Ca) content, and mRNA abundance of intestinal Ca transporters in broiler chickens aged 1–21 days. A total of 420 one-day-old female Arbor Acres broilers were assigned to six treatments. Diet 1 did not contain 25-OH-D3 (0 µg/kg 25-OH-D3); diets 2–6 were based on diet 1, but additionally supplemented with 3.125, 6.25, 12.5, 25, and 50 µg/kg 25-OH-D3. The results showed that the addition of 3.125–50 µg/kg 25-OH-D3 increased body weight gain, feed intake, bone mass, and ash, Ca, and phosphorus content in the femur of 1–21-day-old broilers compared to diet 1 (0 µg/kg 25-OH-D3). Supplementing 6.25–50 µg/kg 25-OH-D3 increased transcript levels of Ca-binding protein D28k (CaBP-D28k) in the duodenum, jejunum, and ileum compared to diet 1. The level of CaBP-D28k mRNA expression in the three intestinal segments increased by 1171-, 2091-, and 46-fold, respectively, after the addition of 50 µg/kg 25-OH-D3. The levels of plasma membrane Ca ATPase 1b (PMCA1b) mRNA in the jejunum and ileum increased after supplementing 12.5–50 µg/kg 25-OH-D3. The abundance of sodium-Ca exchanger 1 (NCX1) mRNA increased in the duodenum after the addition of 12.5 and 50 µg/kg 25-OH-D3. No differences were observed in mRNA levels of CaBP-D28k, PMCA1b, and NCX1 in the jejunum and ileum in broilers fed 12.5–50 µg/kg 25-OH-D3. These data demonstrated that 25-OH-D3 improved the growth rate and promoted transcription of the intestinal Ca transporter gene in broiler chickens aged 1–21 days. The requirement of broilers for 25-OH-D3 was at least 12.5 µg/kg based on gene expression levels of intestinal Ca transporters genes.
FUNDING
This work was supported by the National Natural Science Foundation of China (32072753).
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
 
REFERENCES (27)
1.
AOAC International, 2005. Official Methods of Analysis of AOAC International. 18th Edition. Gaithersburg, MD (USA)
 
2.
Armbrecht H.J., Boltz M.A., Kumar V.B., 1999. Intestinal plasma membrane calcium pump protein and its induction by 1,25(OH)2D3 decrease with age. Am. J. Physiol. 277, 41–47, https://doi.org/10.1152/ajpgi....
 
3.
Bar A., Razaphkovsky V., Vax E., Plavnik I., 2003. Performance and bone development in broiler chickens given 25-hydroxycholecalciferol. Br. Poult. Sci. 44, 224–233, https://doi.org/10.1080/000716...
 
4.
Centeno V.A., de Barboza G.E.D., Marchionatti A.M., Alisio A.E., Dallorso M.E., Nasif R., de Talmoni N.G.T., 2004. Dietary calcium deficiency increases Ca2+ uptake and Ca2+ extrusion mechanisms in chick enterocytes. Comp. Biochem. Physiol. 139, 133–141, https://doi.org/10.1016/j.cbpb...
 
5.
Chen G.H., Zhang J.L., Wang J.G., Zhang N., Qu H.X., Wang Z.X., Yan Y.F., Han J.C., 2017. Requirement of 25-hydroxycholecalciferol for broilers. Chinese J. Anim. Nutr. 29, 2335–2347
 
6.
Cho T.A., Sadiq M.B., Srichana P., Anal A.K., 2020. Vitamin D3 enhanced intestinal phosphate cotransporter genes in young and growing broilers. Poult. Sci. 99, 2041–2047, https://doi.org/10.1016/j.psj....
 
7.
Fritts C.A., Waldroup P.W., 2003. Effect of source and level of vitamin D on live performance and bone development in growing broilers. J. Appl. Poult. Res. 12, 45–52, https://doi.org/10.1093/japr/1...
 
8.
Ghijsen W.E., De Jong M.D., Van Os C.H., 1983. Kinetic properties of Na+/Ca2+ exchange in basolateral plasma membranes of rat small intestine. Biochim. Biophys. Acta-Biomembr. 730, 85–94. https://doi.org/10.1016/0005-2...
 
9.
Han J.C., Chen G.H., Wang J.G., Zhang J.L., Qu H.X., Zhang C.M., Yan Y.F., Cheng Y.H., 2016. Evaluation of relative bioavailability of 25-hydroxycholecalciferol to cholecalciferol for broiler chickens. Asian Australas. J. Anim. Sci. 29, 1145–1151, https://doi.org/10.5713/ajas.1...
 
10.
Han J.C., Wang X.N., Wu L.H., Lv X.L., He L., Qu H.X., Shi C.X., Zhang L., Wang Z.X., 2022. Dietary calcium levels regulate calcium transporter gene expression levels in the small intestine of broiler chickens. Br. Poult. Sci. 63, 202–210, https://doi.org/10.1080/000716...
 
11.
Khuituan P., Teerapornpuntakit J., Wongdee K., Suntornsaratoon P., Konthapakdee N., Sangsaksri J., Sripong C., Krishnamra N., Charoenphandhu N., 2012. Fibroblast growth factor-23 abolishes 1,25-dihydroxyvitamin D₃-enhanced duodenal calcium transport in male mice. Am. J. Physiol.-Endocrinol. Metab. 302, 903–913, https://doi.org/10.1152/ajpend...
 
12.
Khuituan P., Wongdee K., Jantarajit W., Suntornsaratoon P., Krishnamra N., Charoenphandhu N., 2013. Fibroblast growth factor-23 negates 1,25(OH)2D3-induced intestinal calcium transport by reducing the transcellular and paracellular calcium fluxes. Arch. Biochem. Biophys. 536, 46–52, https://doi.org/10.1016/j.abb....
 
13.
Leyva-Jimenez H., Khan M., Gardner K., Abdaljaleel R.A., AL-Jumaa Y., Alsadwi A.M., Bailey C.A., 2019. Developing a novel oral vitamin D3 intake bioassay to re-evaluate the vitamin D3 requirement for modern broiler chickens. Poult. Sci. 98, 3770–3776, https://doi.org/10.3382/ps/pez...
 
14.
Livak K.J., Schmittgen T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25, 402–408, https://doi.org/10.1006/meth.2...
 
15.
Ministry of Agriculture of the People’s Republic of China, 2004. Feeding Standard of Chicken (NY/T 33-2004). China Agriculture Press. Beijing (China)
 
16.
National Research Council (NRC), 1994. Nutrient Requirements of Poultry. National Research Council. 9th Edition. National Academy Press. Washington, DC (USA)
 
17.
Phadnis R., Nemere I., 2003. Direct, rapid effects of 25-hydroxyvitamin D3 on isolated intestinal cells. J. Cell. Biochem. 90, 287–293. https://doi.org/10.1002/jcb.10...
 
18.
Proszkowiec-Weglarz M., Angel R., 2013. Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility. J. Appl. Poult. Res. 22, 609–627, https://doi.org/10.3382/japr.2...
 
19.
Rasmussen H., Wong M., Bikle D., Goodman D.B., 1972. Hormonal control of the renal conversion of 25-hydroxycholecalciferol to 1,25-dihydroxycholecalciferol. J. Clin. Invest. 51, 2502–2504, https://doi.org/10.1172/JCI107...
 
20.
Rousseau X., Valable A.-S., Letourneau-Montminy M.-P., Meme N., Godet E., Magnin M., Nys Y., Duclos M.J., Narcy A., 2016. Adaptive response of broilers to dietary phosphorus and calcium restrictions. Poult. Sci. 95, 2849–2860, https://doi.org/10.3382/ps/pew...
 
21.
Rutherfurd S.M., Chung T.K., Morel P.C., Moughan P.J., 2004. Effect of microbial phytase on ileal digestibility of phytate phosphorus, total phosphorus, and amino acids in a low-phosphorus diet for broilers. Poult. Sci. 83, 61–68, https://doi.org/10.1093/ps/83....
 
22.
SAS Institute, 2002. SAS User’s Guide. Version 9.0. Statistical Analysis System Institute Inc. Cary, NC (USA)
 
23.
Soares J.H., Kerr J.M., Gray R.W., 1995. 25-hydroxycholecalciferol in poultry nutrition. Poult. Sci. 74, 1919–1934, https://doi.org/10.3382/ps.074...
 
24.
Wongdee K., Charoenphandhu N., 2015. Vitamin D-enhanced duodenal calcium transport. Vitam. Horm. 98, 407–440, https://doi.org/10.1016/bs.vh....
 
25.
Yang J.H., Hou J.F., Farquharson C., Zhou Z.L., Deng Y.F., Wang L., Yu Y., 2011. Localisation and expression of TRPV6 in all intestinal segments and kidney of laying hens. Br. Poult. Sci. 52, 507–516, https://doi.org/10.1080/000716...
 
26.
Zhang L., Hu J., Li M., Shang Q., Liu S., Piao X., 2019. Maternal 25-hydroxycholecalciferol during lactation improves intestinal calcium absorption and bone properties in sow-suckling piglet pairs. J. Bone Miner. Metab. 37, 1083–1094, https://doi.org/10.1007/s00774...
 
27.
Zhang L.H., He T.F., Hu J.X., Li M., Piao X.S., 2020. Effects of normal and low calcium and phosphorus levels and 25-hydroxycholecalciferol supplementation on performance, serum antioxidant status, meat quality, and bone properties of broilers. Poult. Sci. 99, 5663–5672, https://doi.org/10.1016/j.psj....
 
ISSN:1230-1388
Journals System - logo
Scroll to top