ORIGINAL PAPER
Figure from article: Probiotics isolated from...
 
KEYWORDS
TOPICS
ABSTRACT
In recent years, the overuse of antibiotics in livestock feed has raised significant public health concerns. As a result, antibiotic-free breeding has become a key focus of sustainable agricultural development. Efforts to replace antibiotics in feed have largely focused on plant-derived compounds, extracts, and probiotics or their metabolites. In this study, four probiotic strains: Lactobacillus delbrueckii XH-9, Lacticaseibacillus plantarum GM-6, Lactiplantibacillus rhamnosus GM-7, and Bacillus subtilis N-1 were isolated from traditional fermented products of the Tibetan Plateau, and demonstrated inhibitory effects against Escherichia coli and Salmonella. A total of 45 healthy male Hu sheep (aged 30 days, with similar initial body weight) were randomly assigned to three groups: control, antibiotic, and probiotics. After 35 days of feeding, the probiotic group showed significantly reduced levels of high-density lipoprotein cholesterol (HDL-C; P < 0.001), total cholesterol (T-CH; P < 0.0001), total bilirubin (T-BiL; P < 0.001), creatinine (CR; P < 0.001), interleukin-1β (IL-1β; P < 0.05), and malonaldehyde (MDA; P < 0.001), alongside increased levels of total protein (TP; P < 0.05) and tumornecrosis factor-α (TNF-α; P < 0.0001), as well as enhanced activities of superoxide dismutase (SOD; P < 0.05), and catalase (CAT; P < 0.05). Analysis of gut microbiota composition demonstrated that antibiotic treatment significantly altered microbial community structure and promoted the growth of opportunistic pathogens. Conversely, probiotics markedly increased the relative abundance of beneficial bacteria, including Lactobacillus (P < 0.05) and Bifidobacterium (P < 0.0001). These findings collectively demonstrate that the probiotic strains effectively reduced oxidative stress, enhanced immune responses, and supported healthy gut microbiota development in growing lambs, indicating their potential as effective probiotic feed additives.
ACKNOWLEDGEMENTS
We thank the Gansu Provincial Key Laboratory of Microbial Resources Development and Utilization, and the Gansu Branch of the China Center of Industrial Culture Collection, Institute of Biology, Gansu Academy of Sciences for providing the necessary equipment.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
REFERENCES (70)
1.
Arowolo M.A., He J., 2018. Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review. Anim. Nutr. 4, 241–249, https://doi.org/10.1016/j.anin....
 
2.
Arsène M.M.J., Davares A.K.L., Andreevna S.L., Vladimirovich E.A., Carime B.Z., Marouf R., Khelifi I., 2021. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics. Vet. World. 14, 319, https://doi.org/10.14202/vetwo....
 
3.
Aruwa C.E., Pillay C., Nyaga M.M., Sabiu S., 2021. Poultry gut healthmicrobiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. J. Anim. Sci. Biotechnol. 12, 1–15, https://doi.org/10.1186/s40104....
 
4.
Babot J.D., Arganaraz-Martinez E., Quiroga M., Grande S.M., Apella M.C., Perez Chaia A., 2021. Protection of the intestinal epithelium of poultry against deleterious effects of dietary lectins by a multi-strain bacterial supplement. Res. Vet. Sci. 135, 27–35, https://doi.org/10.1016/j.rvsc....
 
5.
Bąkowski M., Kiczorowska B., 2021. Probiotic microorganisms and herbs in ruminant nutrition as natural modulators of health and production efficiency-a review. Ann. Anim. Sci. 21, 3–28, https://doi.org/10.2478/aoas-2....
 
6.
Ban Y., Guan L.L., 2021. Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. J. Anim. Sci. Biotechnol. 12, 1–22, https://doi.org/10.1186/s40104....
 
7.
Blanco C., Giráldez F.J., Prieto N., Morán L., Andrés S., Benavides J., Tejido M.L., Bodas R., 2014. Effects of dietary inclusion of sunflower soap stocks on nutrient digestibility, growth performance, and ruminal and blood metabolites of light fattening lambs. J. Anim. Sci. 92, 4086–4094, https://doi.org/10.2527/jas.20....
 
8.
Browne H.P., Neville B.A., Forster S.C., Lawley T.D., 2017. Transmission of the gut microbiota: Spreading of health. Nat. Rev. Microbiol. 15, 531–543, https://doi.org/10.1038/nrmicr....
 
9.
Calhoun M.C., Shelton M., 1973. Effect of chlortetracycline and sulfamethazine supplementation on the performance of lambs fed a high concentrate diet. J. Anim. Sci. 37, 1433–1437, https://doi.org/10.2527/jas197....
 
10.
Catalioto R.M., Maggi C.A., Giuliani S., 2011. Intestinal epithelial barrier dysfunction in disease and possible therapeutical interventions. Curr. Med. Chem. 18, 398–426, https://doi.org/10.2174/092986....
 
11.
Devyatkin V., Mishurov A., Kolodina E., 2021. Probiotic effect of Bacillus subtilis B-2998D, B-3057D, and Bacillus licheniformis B-2999B complex on sheep and lambs. J. Advan. Vet. Anim. Res. 8, 146, https://doi.org/10.5455/javar.....
 
12.
Dimidi E., Christodoulides S., Scott S.M., Whelan K., 2017. Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Adv. Nutr. 8, 484–494, https://doi.org/10.3945/an.116....
 
13.
Ding S., Yan W., Ma Y., Fang J., 2021. The impact of probiotics on gut health via alternation of immune status of monogastric animals. Anim. Nutr. 7, 24–30, https://doi.org/10.1016/j.anin....
 
14.
Dong N., Li X., Xue C., Wang C., Xu X., Bi C., Shan A., Li D., 2019. Astragalus polysaccharides attenuated inflammation and balanced the gut microflora in mice challenged with Salmonella typhimurium. Int. Immunopharmacol. 74, 105681, https://doi.org/10.1016/j.inti....
 
15.
Dowarah R., Verma A.K., Agarwal N., 2017. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: A review. Anim Nutr. 3, 1–6, https://doi.org/10.1016/j.anin....
 
16.
Duarte M.E., Kim S.W., 2022. Intestinal microbiota and its interaction to intestinal health in nursery pigs. Anim. Nutr. 8, 169 184, https://doi.org/10.1016/j.anin....
 
17.
El-Hack A., Mohamed E., Samak D.H., Noreldin A.E., El-Naggar K., Abdo M., 2018. Probiotics and plant-derived compounds as eco-friendly agents to inhibit microbial toxins in poultry feed: A comprehensive review. Environ. Sci. Pollut. R. 25, 31971–31986, https://doi.org/10.1007/s11356....
 
18.
El-Katcha M.I., Soltan M.A., Essi M.S., 2016. Effect of Pediococcus spp. Supplementation on growth performance, nutrient digestibility and some blood serum biochemical changes of fattening lambs. Alexandria J. Vet. Sci. 49, 44–54, https://doi.org/10.5455/ajvs.2....
 
19.
Feng P., Yang J., Zhao S. et al., 2022. Human supplementation with Pediococcus acidilactici GR-1 decreases heavy metals levels through modifying the gut microbiota and metabolome. NPJ Biofilms Microbiol. 8, 1–18, https://doi.org/10.1038/s41522....
 
20.
Feng P., Ye Z., Han H. et al., 2020a. Tibet plateau probiotic mitigates chromate toxicity in mice by alleviating oxidative stress in gut microbiota. Commun. Biol. 3, 1–12, https://doi.org/10.1038/s42003....
 
21.
Freese H.M., Schink B., 2011. Composition and stability of the microbial community inside the digestive tract of the aquatic crustacean daphnia magna. Microb. Ecol. 62, 882–894, https://doi.org/10.1007/s00248....
 
22.
Gaggìa F., Mattarelli P., Biavati B., 2010. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 141, S15–S28, https://doi.org/10.1016/j.ijfo....
 
23.
Gil A., Rueda R., 2002. Interaction of early diet and the development of the immune system. Nutr. Res. Rev. 15, 263–292, https://doi.org/10.1079/NRR200....
 
24.
Golden C.E., Mishra A., 2020. Prevalence of Salmonella and Campylobacter spp. in alternative and conventionally produced chicken in the United States: A systematic review and meta-analysis. J. Food Protect. 83, 1181–1197, https://doi.org/10.4315/JFP-19....
 
25.
Gomes A.M.P., Malcata F.X., 1999. Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Tech. 10, 139–157, https://doi.org/10.1016/S0924-....
 
26.
Gosling R.J., Mueller-Doblies D., Martelli F., Nunez-Garcia J., Kell N., Rabie A., Wales A.D., Davies R.H., 2018. Observations on the distribution and persistence of monophasic Salmonella typhimurium on infected pig and cattle farms. Vet. Microbiol. 227, 90–96, https://doi.org/10.1016/j.vetm....
 
27.
Guilloteau P., Zabielski R., Blum J.W., 2009. Gastrointestinal tract and digestion in the young ruminant: ontogenesis, adaptations, consequences and manipulations. J. Physiol. Pharmacol. 60, 37–46, https://doi.org/10.1002/ar.228....
 
28.
Gunaratnam S., Millette M., McFarland L.V., DuPont H.L., Lacroix M., 2021. Potential role of probiotics in reducing clostridioides difficile virulence: Interference with quorum sensing systems. Microb. Pathog. 153, 104798, https://doi.org/10.1016/j.micp....
 
29.
Hanlon K.E., Miller M.F., Guillen L.M., Echeverry A., Dormedy E., Cemo B., Branham L.A., Sanders S., Brashears M.M., 2018. Presence of Salmonella and Escherichia coli O157 on the hide, and presence of Salmonella, Escherichia coli O157 and Campylobacter in feces from small-ruminant (goat and lamb) samples collected in the United States, Bahamas and Mexico. Meat Sci. 135, 1–5, https://doi.org/10.1016/j.meat....
 
30.
Hassan A., Gado H., Anele U.Y., Berasain M.A.M., Salem A.Z.M., 2020. Influence of dietary probiotic inclusion on growth performance, nutrient utilization, ruminal fermentation activities and methane production in growing lambs. Anim. Biotechnol. 31, 365–372, https://doi.org/10.1080/104953....
 
31.
He Y., Liu C., Lu Q., Ye J., Xu N., 2020. Effects of compound probiotics on growth performance, apparent digestibility and blood parameters of growing hu sheep. Chinese J. Anim. Sci. 56, 110–114, https://doi.org/10.19556/j.025....
 
32.
Hidalgo-Cantabrana C., Nikolic M., López P., Suárez A., Miljkovic M., Kojic M., Margolles A., Golic N., Ruas-Madiedo P., 2014. Exopolysaccharide-producing Bifidobacterium animalis subsp. Lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue. Anaerobe 26, 24–30, https://doi.org/10.1016/j.anae....
 
33.
Iannetti L., Romagnoli S., Cotturone G., Podaliri Vulpiani M., 2021. Animal welfare assessment in antibiotic-free and conventional broiler chicken. Animals 11, 2822, https://doi.org/10.3390/ani111....
 
34.
Ighodaro O.M., Akinloye O.A., 2018. First line defence antioxidantssuperoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 54, 287–293, https://doi.org/10.1016/j.ajme....
 
35.
Jha R., Das R., Oak S., Mishra P., 2020. Probiotics (direct-fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: A systematic review. Animals. 10, 1863, https://doi.org/10.3390/ani101....
 
36.
Kailasapathy K., Chin J., 2000. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol. 78, 80–88, https://doi.org/10.1046/j.1440....
 
37.
Kelsey A.J., Colpoys J.D., 2018. Effects of dietary probiotics on beef cattle performance and stress. J. Vet. Behav. 27, 8–14, https://doi.org/10.1016/j.jveb....
 
38.
Kemgang T.S., Kapila S., Shanmugam V.P., Kapila R., 2014. Crosstalk between probiotic lactobacilli and host immune system. J. Appl. Microbiol. 117, 303–319, https://doi.org/10.1111/jam.12....
 
39.
Kumar M., Kumar V., Roy D., Kushwaha R., Vaiswani S., 2014. Application of herbal feed additives in animal nutrition-a review. International J. Livest. Res. 4, 1–8, https://doi.org/10.5455/ijlr.2....
 
40.
Kunyeit L., Kurrey N.K., Anu-Appaiah K.A., Rao R.P., 2019. Probiotic yeasts inhibit virulence of non-albicans Candida species. mBio. 10, e02307–19, https://doi.org/10.1128/mBio.0....
 
41.
Li A., Wang N., Li N., Li B., Yan F., Song Y., Hou J., Huo G., 2021. Modulation effect of chenpi extract on gut microbiota in highfat diet-induced obese C57BL/6 mice. J. Food Biochem. 45, e13541, https://doi.org/10.1111/jfbc.1....
 
42.
Li P., Tian W., Jiang Z., Liang Z., Wu X., Du B., 2018. Genomic characterization and probiotic potency of Bacillus sp. DU-106, a highly effective producer of L-lactic acid isolated from fermented yogurt. Front Microbiol. 9, 2216, https://doi.org/10.3389/fmicb.....
 
43.
Liu C., Tan L., Zhang L., Tian W., Ma L., 2021a. A review of the distribution of antibiotics in water in different regions of china and current antibiotic degradation pathways. Front Env. Sci.-Switz. 9, 692298, https://doi.org/10.3389/fenvs.....
 
44.
Liu M., Zhang W., Yao J., Niu J., 2021b. Effect of Boulardii yeast wall polysaccharides onintestinalmicroflora in jejunum, cecum and colon for early-weaned lambs by 16S rRNA sequence analysis. Int. J. Agric. Biol. 26, 156–168, https://doi.org/10.17957/IJAB/....
 
45.
López-Gálvez G., López-Alonso M., Pechova A., Mayo B., Dierick N., Gropp J., 2021. Alternatives to antibiotics and trace elements (copper and zinc) to improve gut health and zootechnical parameters in piglets: A review. Anim. Feed Sci. Tech. 271, 114727, https://doi.org/10.1016/j.anif....
 
46.
Maisonnier S., Gomez J., Bree A., Berri C., Baeza E., Carre B., 2003. Effects of microflora status, dietary bile salts and guar gum on lipid digestibility, intestinal bile salts, and histomorphology in broiler chickens. Poultry Sci. 82, 805–814, https://doi.org/10.1093/ps/82.....
 
47.
Mao S., Zhang M., Liu J., Zhu W., 2015. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: Membership and potential function. Sci. Rep. 5, 1–14, https://doi.org/10.1038/srep16....
 
48.
Martella V., Decaro N., Buonavoglia C., 2015. Enteric viral infections in lambs or kids. Vet. Microbiol. 181, 154–160, https://doi.org/10.1016/j.vetm....
 
49.
Mateos E., Piriz S., Valle J., Hurtado M., Vadillo S., 1997. Minimum inhibitory concentrations for selected antimicrobial agents against Fusobacterium necrophorum isolated from hepatic abscesses in cattle and sheep. J. Vet. Pharmacol. Ther. 20, 21–23, https://doi.org/10.1046/j.1365....
 
50.
Mingmongkolchai S., Panbangred W., 2018. Bacillus probiotics: An alternative to antibiotics for livestock production. J. Appl. Microbiol. 124, 1334-1346, https://doi.org/10.1111/jam.13....
 
51.
Nadziakiewicza M., Kehoe S., Micek P., 2019. Physico-chemical properties of clay minerals and their use as a health promoting feed additive. Animals. 9, 714, https://doi.org/10.3390/ani910....
 
52.
Reddy P., Reddy K.K., Kumar M.S., Harikrishna C., Raghunandan T., 2011. Effect of feeding Pediococcus acidiactici and Saccharomyces boulardii as probiotics in lambs. Indian J. Small Rum. 17, 53–58, https://api.semanticscholar.or....
 
53.
Reddy P.R.K., Elghandour M., Salem A.Z.M., Yasaswini D., Reddy P.P.R., Reddy A.N., Hyder I., 2020. Plant secondary metabolites as feed additives in calves for antimicrobial stewardship. Anim. Feed Sci. Tech. 264, 114469, https://doi.org/10.1016/j.anif....
 
54.
Reuben R.C., Elghandour M.M., Alqaisi O., Cone J.W., Márquez O., Salem A.Z.M., 2022. Influence of microbial probiotics on ruminant health and nutrition: Sources, mode of action and implications. J. Sci. Food Agric. 102, 1319–1340, https://doi.org/10.1002/jsfa.1....
 
55.
Sachdeva A., Tomar T., Malik T., Bains A., Karnwal A., 2025. Exploring probiotics as a sustainable alternative to antimicrobial growth promoters: Mechanisms and benefits in animal health. Front. Sustain. Food Syst. 8, 1523678, https://doi.org/10.3389/fsufs.....
 
56.
Sergeev I.N., Aljutaily T., Walton G., Huarte E., 2020. Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients 12, 1, https://doi.org/10.3390/nu1201....
 
57.
Shehata A.M., Paswan V.K., Attia Y.A. et al. 2021. Managing gut microbiota through in ovo nutrition influences early-life programming in broiler chickens. Animals (Basel) 11, 3491, https://doi.org/10.3390/ani111....
 
58.
Shu Q., Qu F., Gill H.S., 2001. Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. J. Pediatr. Gastroenterol. Nutr. 33, 171–177, https://doi.org/10.1097/000051....
 
59.
Soares M.B., Martinez R.C.R., Pereira E.P.R., Balthazar C.F., Cruz A.G., Ranadheera C.S., Sant’Ana A.S., 2019. The resistance of Bacillus, Bifidobacterium, and Lactobacillus strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions. Food Res. Int. 125, 108542, https://doi.org/10.1016/j.food....
 
60.
Subhadra B., 2011. Algal biorefinery-based industry: An approach to address fuel and food insecurity for a carbon-smart world. J. Sci. Food Agric. 91, 2–13, https://doi.org/10.1002/jsfa.4....
 
61.
Tang H., Yao B., Gao X., Yang P., Wang Z., Zhang G., 2016. Effects of glucose oxidase on the growth performance, serum parameters and faecal microflora of piglets. S. Afr. J. Anim. Sci. 46, 14–20, https://doi.org/10.4314/sajas.....
 
62.
Wenk C., 2000. Recent advances in animal feed additives such as metabolic modifiers, antimicrobial agents, probiotics, enzymes and highly available minerals-review. Asian-Australasian J. Anim. Sci. 13, 86–95, https://doi.org/10.5713/ajas.2....
 
63.
Wu Y., Ye Z., Feng P., Li R., Chen X., Tian X., Han R., Kakade A., Liu P., Li X., 2021. Limosilactobacillus fermentum JL-3 isolated "jiangshui” ameliorates hyperuricemia by degrading uric acid. Gut Microbes. 13, 1897211, https://doi.org/10.1080/194909....
 
64.
Yaacob S.N.S., Wahab R.A., Misson M., Sabullah M.K., Huyop F., Zin N.M., 2022. Lactic acid bacteria and their bacteriocins: New potential weapons in the fight against methicillin-resistant staphylococcus aureus. Future Microbiol. 17, 683–699, https://doi.org/10.2217/fmb-20....
 
65.
Yang W., Meng F., Peng J., Han P., Fang F., Ma L., Cao B., 2014. Isolation and identification of a cellulolytic bacterium from the tibetan pig’s intestine and investigation of its cellulase production. Electron J Biotechn. 17, 262–267, https://doi.org/10.1016/j.ejbt....
 
66.
Zamboti M.L., Pertile S.F.N., Santos R.M.D., Barreto J.V.P., Zanoni A.P.K., Castilho C., Zundt M., Rego F.C.A., 2023. Nutrient intake, digestibility and ruminal characteristics of lambs supplemented with probiotic. Trop Anim Health Prod. 55, 163, https://doi.org/10.1007/s11250....
 
67.
Zeng Z., Yuan Q., Yu R., Zhang J., Ma H., Chen S., 2019. Ameliorative effects of probiotic Lactobacillus paracasei NL41 on insulin sensitivity, oxidative stress, and beta-cell function in a type 2 diabetes mellitus rat model. Mol. Nutr. Food Res. 63, 1900457, https://doi.org/10.1002/mnfr.2....
 
68.
Zhang Y., Choi S.H., Nogoy K.M., Liang S., 2021. The development of the gastrointestinal tract microbiota and intervention in neonatal ruminants. Animal 15, 100316, https://doi.org/10.1016/j.anim....
 
69.
Zhou Q., Li K., Jun X., Bo L., 2009. Role and functions of beneficial microorganisms in sustainable aquaculture. Bioresource Technol. 100, 3780–3786, https://doi.org/10.1016/j.bior...
 
70.
Zolkiewicz J., Marzec A., Ruszczynski M., Feleszko W., 2020. Postbiotics-a step beyond pre- and probiotics. Nutrients 12, 2189, https://doi.org/10.3390/nu1208....
 
ISSN:1230-1388
Journals System - logo
Scroll to top