ORIGINAL PAPER
 
KEYWORDS
TOPICS
ABSTRACT
The effects of heat stress on the concentration of 70 kDa heat shock protein (HSP70) in plasma and saliva, plasma insulin concentration and some metabolic indices (plasma glucose, free fatty acids, beta-hydroxybutyrate and urea concentrations) were assessed in Holstein-Friesian, Hungarian Simmental and Jersey cows. The study included 30 animals from a farm breeding Holstein- Friesians, 30 from a Jersey farm and 30 from a farm keeping Simmentals (10 dry cows, 10 mid-lactating and 10 lactating cows from each farm, respectively). Sampling was performed under thermoneutral (spring) and heat stress (summer) conditions. Based on plasma HSP70 and insulin concentrations, Holstein cows were determined to be most susceptible to heat stress. No characteristic breed-related changes in metabolic indices were found. The results indicated the importance of heat load-reducing strategies in the Holstein-Friesian breed.
FUNDING
The Project was supported by the European Union and co-financed by the European Social Fund (grant agreement No. EFOP-3.6.1-16-2016- 00024). The authors are grateful for the support of the OTKA Research Scholarship of the National Research, Development and Innovation Office (Budapest, Hungary; K-134204). Levente Kovács was supported by the following grants: 2020-1.1.2-PIACIKFI- 2020-00109, 2020-1.1.2-PIACI-KFI-2020-00142, 2020-1.1.2-PIACI-KFI-2021-00290 and GINOP PLUSZ-2.1.1-21-1366973.
CONFLICT OF INTEREST
The Authors declare that there is no conflict of interest.
 
REFERENCES (46)
1.
Allen J.D., Hall L.W., Collier R.J., Smith J.F., 2015. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. J. Dairy Sci. 98, 118–127, https://doi.org/10.3168/jds.20...
 
2.
Aneja R., Odoms K., Dunsmore K., Shanley T.P., Wong H.R., 2006. Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. J. Immunol. 177, 7184–7192, https://doi.org/10.4049/jimmun...
 
3.
Baek Y.C., Kim M., Jeong J.Y., Oh Y.K., Lee S.D., Lee Y.K., Ji S.Y., Choi H., 2019. Effects of short-term acute heat stress on physiological responses and Heat Shock Proteins of Hanwoo steer (Korean Cattle). J. Anim. Reprod. Biotechnol. 34, 173–182, https://doi.org/10.12750/JARB....
 
4.
Bakony M., Könyves L., Hejel P., Kovács L., Jurkovich V., 2019. Heat stress in dairy cows Part 1. – A review on physiological factors involved in milk yield loss (in Hungarian). Magy. Állatorv. Lapja 141, 341–350
 
5.
Bates D., Maechler M., Bolker B., Walker S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Software 67, 1–48, https://doi.org/10.18637/jss.v...
 
6.
Baumgard L.H., Wheelock J.B., Sanders S.R., Moore C.E., Green H.B., Waldron M.R., Rhoads R.P., 2011. Postabsorptive carbohydrate adaptations to heat stress and monensin supplementation in lactating Holstein cows. J. Dairy Sci. 94, 5620–5633, https://doi.org/10.3168/jds.20...
 
7.
Bianca W., 1962. Relative importance of dry- and wet-bulb temperatures in causing heat stress in cattle. Nature 195, 251–252
 
8.
Calamari L., Petrera F., Abeni F., Bertin G., 2011. Metabolic and hematological profiles in heat stressed lactating dairy cows fed diets supplemented with different selenium sources and doses. Livest. Sci. 142, 128–137, https://doi.org/10.1016/j.livs...
 
9.
Catalani E., Amadori M., Vitali A., Bernabucci U., Nardone N., Lacetera N., 2010. The Hsp72 response in peri-parturient dairy cows: relationships with metabolic and immunological parameters. Cell Stress Chaperones 15, 781–790, https://doi.org/10.1007/s12192...
 
10.
Collier R.J., Dahl G.E., van Baale M.J., 2006. Major advances associated with environmental effects on dairy cattle. J. Dairy Sci. 89, 1244–1253, https://doi.org/10.3168/jds.s0...
 
11.
Collier R.J., Eley R.M., Sharma A.K., Pereira R.M., Buffington D.E., 1981. Shade management in subtropical environment for milk yield and composition in Holstein and Jersey cows. J. Dairy Sci. 64, 844–849, https://doi.org/10.3168/jds.S0...
 
12.
Dado-Senn B., Vega Acosta L., Torres Rivera M. et al., 2020. Pre- and postnatal heat stress abatement affects dairy calf thermoregulation and performance. J. Dairy Sci. 103, 4822–4837, https://doi.org/10.3168/jds.20...
 
13.
Fournel S., Ouellet V., Charbonneau É., 2017. Practices for alleviating heat stress of dairy cows in humid continental climates: a literature review. Animals 7, 37, https://doi.org/10.3390/ani705...
 
14.
Gantner V., Bobic T., Gregic M., Gantner R., Kuterovac K., Potocnik K., 2017a. The differences in heat stress resistance due to dairy cattle breed. Mljekarstvo 67, 112–122, https://doi.org/10.15567/mljek...
 
15.
Gantner V., Bobic T., Gantner R., Gregic M., Kuterovac K., Novakovic J., Potocnik K., 2017b. Differences in response to heat stress due to production level and breed of dairy cows. Int. J. Biometeorol. 61, 1675–1685, https://doi.org/10.1007/s00484...
 
16.
Garner J.B., Douglas M.S., Williams R.O., Wales W.J., Marett L.C., DiGiacomo K., Leury B.J., Hayes B.J., 2017. Responses of dairy cows to short-term heat stress in controlled-climate chambers. Anim. Prod. Sci. 57, 1233–1241, https://doi.org/10.1071/AN1647...
 
17.
Gaughan J.B., Bonner S.L., Loxton I., Mader T.L., 2013. Effects of chronic heat stress on plasma concentration of secreted heat shock protein 70 in growing feedlot cattle. J. Anim. Sci. 91, 120–129, https://doi.org/10.2527/jas.20...
 
18.
Hansen P.J., 2013. Genetic control of heat stress in dairy cattle. Proceedings 49th Florida Dairy Production Conference. Gainesville, FA (USA)
 
19.
Harris D.L., Shrode R.R., Rupel I.W., Leighton R.E., 1960. A study of solar radiation as related to physiological and production responses of lactating Holstein and Jersey cows. J. Dairy Sci. 43, 1255–1262, https://doi.org/10.3168/jds.S0...
 
20.
Holm S., 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70, http://www.jstor.org/stable/46...
 
21.
Itoh F., Obara Y., Rose M.T., Fuse H., Hashimoto H., 1998. Insulin and glucagons secretion in lactating cows during heat exposure. J. Anim. Sci. 76, 2182–2189, https://doi.org/10.2527/1998.7...
 
22.
Johnson J.D., Campisi J., Sharkey C.M., Kennedy S.L., Nickerson M., Fleshner M., 2005. Adrenergic receptors mediate stress-induced elevations in extracellular Hsp72. J. Appl. Physiol. 99, 1789–1795, https://doi.org/10.1152/japplp...
 
23.
Kadzere C.T., Murphy M.R., Silanikove N., Maltz E., 2002. Heat stress in lactating dairy cows: a review. Livest. Prod. Sci. 77, 59–91, https://doi.org/10.1016/S0301-...
 
24.
Kiang J.G., Tsokos G.C., 1998. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol. Ther. 80, 183–201, https://doi.org/10.1016/s0163-...
 
25.
Kregel K.C., 2002. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 5, 2177–2186, https://doi.org/10.1152/japplp...
 
26.
Kristensen T.N., Løvendahl P., Berg P., Loeschcke V., 2004. Hsp72 is present in plasma from Holstein-Friesian dairy cattle, and the concentration level is repeatable across days and age classes. Cell Stress Chaperones 9, 143–149, https://doi.org/10.1379/CSC-17...
 
27.
Kumar J., Yadav B., Kumar Madan A., Kumar M., Sirohi R., Vidyasagar Reddy A., 2020. Dynamics of heat-shock proteins, metabolic and endocrine responses during increasing temperature humidity index (THI) in lactating Hariana (Zebu) cattle. Biol. Rhythm Res. 51, 934–950, https://doi.org/10.1080/092910...
 
28.
Kvidera S.K., Dickson M.J., Abuajamieh M. et al., 2017. Intentionally induced intestinal barrier dysfunction causes inflammation, affects metabolism, and reduces productivity in lactating Holstein cows. J. Dairy Sci. 100, 4113–4127, https://doi.org/10.3168/jds.20...
 
29.
Lamy E., Jurkovich V., Rodrigues L. et al, 2017. Detection of 70 kDa heat shock protein in the saliva of dairy cows. J. Dairy Res. 84, 280–282, https://doi.org/10.1017/s00220...
 
30.
Maróti-Agóts Á., Bodó I., Jávorka L., Gyurmán A., Solymosi N., Zenke P., Skogseth M., Zöldág L., 2011. Possible genetic sign of heat stress adaptation in Hungarian Grey Bos taurus breed. Acta Biol. Hung. 62, 65–72, https://doi.org/10.1556/abiol....
 
31.
Min L., Zhao S., Tian H., Zhou X., Zhang Y., Li S., Yang H., Zheng N., Wang J., 2017. Metabolic responses and „omics” technologies for elucidating the effects of heat stress in dairy cows. Int. J. Biometeorol. 61, 1149–1158, https://doi.org/10.1007/s00484...
 
32.
Molvarec A., Rigó J., Lázár L., Balogh K., Makó V., Cervenak L., Mézes M., Prohászka Z., 2009. Increased serum heat-shock protein 70 levels reflect systemic inflammation, oxidative stress and hepatocellular injury in preeclampsia. Cell Stress Chaperones 14, 151–159, https://doi.org/10.1007%2Fs121...
 
33.
Noma A., Okabe H., Kita M., 1973. A new colorimetric micro-determinatoin of free fatty acids in serum. Clin. Chim. Acta 43, 317–320, https://doi.org/10.1016/0009-8...
 
34.
Polsky L., von Keyserling M.A.G., 2017. Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 100, 8645–8657, https://doi.org/10.3168/jds.20...
 
35.
R Core Team, 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna (Austria), https://www.R-project.org/
 
36.
Reiczigel J., Solymosi N., Könyves L., Maróti-Agóts Á., Kern A., Bartyik J., 2009. Examination of heat stress caused milk production loss by the use of temperature-humidity indices (in Hungarian). Magy. Állatorv. Lapja 131, 127–144
 
37.
Rhoads R.P., Sanders S.R., Cole L., Skrzypek M., Elsasser T., Duff G.C., Collier R.J., Baumgard L.H., 2009. Effects of heat stress on glucose homeostasis and metabolic response to an endotoxin challenge in Holstein steers . J. Anim. Sci. 87 (E-Suppl. 2), 78
 
38.
Rhoads M.L., Kim J.W., Collier R.J., Crooker B.A., Boisclair Y.R., Baumgard L.H., Rhoads R.P., 2013. Effects of heat stress and nutrition on lactating Holstein cows: II. Aspects of hepatic growth hormone responsiveness. J. Dairy Sci. 93, 170–179, https://doi.org/10.3168/jds.20...
 
39.
Russell V.L., 2022. Package emmeans. Estimated marginal means, aka least-squares means. Version 1.7.2, https://CRAN.R-project.org/pac...
 
40.
Shilja S., Sejian V., Bagath M., Mech A., David C.G., Kurien E.K., Varma G., Bhatta R., 2016. Adaptive capability as indicated by behavioral and physiological responses, plasma HSP70 level, and PBMC HSP70 expression in Osmanabadi goats subjected to combine (heat and nutritional) stressors. Int. J. Biometeorol. 60, 1311–1323, https://doi.org/10.1007/s00484...
 
41.
Shwartz G., Rhoads M.L., VanBaale M.J., Rhoads R.P., Baumgard L.H., 2009. Effects of a supplemental yeast culture on heat-stressed lactating Holstein cows. J. Dairy Sci. 92, 935–942, https://doi.org/10.3168/jds.20...
 
42.
Silanikove N., Shapiro F., Shinder D., 2009. Acute heat stress brings down milk secretion in dairy cows by up-regulating the activity of the milk-borne negative feedback regulatory system. BMC Physiol. 9, 13, https://doi.org/10.1186/1472-6...
 
43.
Smith D.L., Smith T., Rude B.J., Ward S.H., 2013. Short communication: Comparison of the effects of heat stress on milk and component yields and somatic cell score in Holstein and Jersey cows. J. Dairy Sci. 96, 3028–3033, https://doi.org/10.3168/jds.20...
 
44.
Solymosi N., Torma C., Kern A., Maróti-Agóts Á., Barcza Z., Könyves L., Berke O., Reiczigel J., 2010. Changing climate in Hungary and trends in the annual number of heat stress days. Int. J. Biometeorol. 54, 423–431, https://doi.org/10.1007/s00484...
 
45.
Wheelock J.B., Rhoads R.P., Vanbaale M.J., Sanders S.R., Baumgard L.H., 2010. Effects of heat stress on energetic metabolism in lactating Holstein cows. J. Dairy Sci. 93, 644–655, https://doi.org/10.3168/jds.20...
 
46.
Yániz J.L., López-Gatius F., Almerı́a S., Carretero T., Garcı́a-Ispierto I., Serrano B., Smith R.F, Dobson H., Santolaria P., 2009. Dynamics of heat shock protein 70 concentrations in peripheral blood lymphocyte lysates during pregnancy in lactating Holstein-Friesian cows. Theriogenology 72, 1041–1046, https://doi.org/10.1016/j.ther...
 
ISSN:1230-1388
Journals System - logo
Scroll to top