CC-BY 4.0

Nutrient composition and in vitro digestion parameters of Jerusalem artichoke (Helianthus tuberosus L.) herbage at different maturity stages in horse and ruminant

K. Kara 1  
Erciyes University, Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, 38280 Kayseri, Turkey
J. Anim. Feed Sci. 2017;26(3):213–225
Publish date: 2017-09-19
The aim of the study was to determine the nutrient composition and in vitro digestion parameters of Jerusalem artichoke (Helianthus tuberosus L.) herbage at different maturity stages (vegetative, early flowering, full flowering and early seeding) in horses and ruminants. The crude protein (CP), ether extract (EE), ash, non-fibrous carbohydrate (NFC), neutral detergent fibre assayed with a heat stable amylase and expressed exclusive of residual ash (aNDFom), acid detergent fibre expressed exclusive of residual ash (ADFom), acid detergent lignin (ADL), total condensed tannins (TCT), total saponin (TSP) and carotenoids (lutein, zeaxanthin, lycopene and α-,β-,γ-carotenes) content in plant samples were analysed. The in vitro total gas and methane production, metabolizable energy (ME), true dry matter disappearance (T-DMd), true organic matter disappearance (T-OMd), gas yield (GY24), partial factor (PF24) and microbial crude protein production (MCP) values and volatile fatty acids (VFAs) concentration in fermentation fluid for herbage samples were determined with the in vitro digestion techniques carried out using horse faeces and ruminant fluids. The aNDFom, ADFom, ADL, EE and TCT content increased with plant maturation (P < 0.05). Zeaxanthin, lycopene and β-carotene content was the highest in full flowering and the lowest in early seeding plant (P < 0.05). With the plant maturation the following parameters decreased (P < 0.05): CP, NFC, ash and TSP content in plant samples, and in vitro total gas and methane production, T-DMd, T-OMd, ME values and molarities of individual VFAs for both horses and ruminants. Consequently, Jerusalem artichoke herbage, especially at vegetative stage, has the potential to be used as quality forage in terms of high/moderate nutrient composition and satisfactory digestion values for both horses and ruminants.
K. Kara   
Erciyes University, Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, 38280 Kayseri, Turkey
1. Allen M.S., 1997. Relation between fermentation acid production in the rumen and the requirement for physically effective fiber. J. Dairy Sci. 80, 1447–1462, https://doi.org/10.3168/jds.S0022-0302(97)76074-0.
2. AOAC, 1990. Official Methods of Analysis of the Association of Official Analytical Chemists. 15th Edition. Arlington, VA (USA).
3. Altın T.B., Barak B., Altın B.N., 2012. Change in precipitation and temperature amounts over three decades in central Anatolia, Turkey. Atmos. Clim. Sci. 2, 107–125, https://doi.org/10.4236/acs.2012.21013.
4. Becker M., Nehring K. (Editors), 1969. Handbook of Feedstuffs (in German). Paul Parey Verlag. Hamburg and Berlin (Germany), pp. 159, 255, 340.
5. Belanche A., de la Fuente G., Newbold C.J., 2015. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions. FEMS Microbiol. Ecol. 91, fiu026, https://doi.org/10.1093/femsec/fiu026.
6. Calderón F., Tornambé G., Martin B., Pradel P., Chauveau-Duriot B., Nozière P., 2006. Effects of mountain grassland maturity stage and grazing management on carotenoids in sward and cow’s milk. Anim. Res. 55, 533–544, https://doi.org/10.1051/animres:2006031.
7. Cheeke P.R., 2000. Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. J. Anim. Sci. 77 (E Suppl.), 1–10, https://doi.org/10.2527/jas2000.00218812007700ES0009x.
8. Crutzen P.J., Aselmann I., Seiler W., 1986. Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans. Tellus Ser. B – Chem. Phys. Meterol. 38, 271–284, https://doi.org/10.3402/tellusb.v38i3-4.15135.
9. Elghandour M.M.M.Y., Kholif A.E., Bastida A.Z., Martínez D.L.P., Salem A.Z.M., 2015. In vitro gas production of five rations of different maize silage and concentrate ratios influenced by increasing levels of chemically characterized extract of Salix babylonica. Turk. J. Vet. Anim. Sci. 39, 186–194, https://doi.org/10.3906/vet-1408-62.
10. Ellis J.L., Kebreab E., Odongo N.E., McBride B.W., Okine E.K., France J., 2007. Prediction of methane production from dairy and beef cattle. J. Dairy Sci. 90, 3456–3466, https://doi.org/10.3168/jds.2006-675.
11. Frape D. (Editor), 2004. Frontmatter, in Equine Nutrition and Feeding. 3rd Edition. Blackwell Publishing Ltd., Oxford (UK), https://doi.org/10.1002/9780470751053.
12. Gracindo C.V., Louvandini H., Riet-Correa F., Barbosa-Ferreira M., de Castro M.B., 2014. Performance of sheep grazing in pastures of Brachiaria decumbens, Brachiaria brizantha, Panicum maximum, and Andropogon gayanus with different protodioscin concentrations. Trop. Anim. Health Prod. 46, 733–737, https://doi.org/10.1007/s11250-014-0556-y.
13. Gunnarsson I.B., Svensson S.-E., Johansson E., Karakashev D., Angelidaki I., 2014. Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop. Indust. Crop. Prod. 56, 231–240, https://doi.org/10.1016/j.indcrop.2014.03.010.
14. Helmi Z., Azzam K.M.A., Tsymbalista Y., Ghazleh R.A., Shaibah H., Aboul-Enein H., 2014. Analysis of essential oil in Jerusalem artichoke (Helianthus tuberosus L.) leaves and tubers by gas chromatography-mass spectrometry. Adv. Pharm. Bull. 4 (Suppl. 2), 521–526, https://doi.org/10.5681/apb.2014.077.
15. Hook S.E., Wright A.-D.G., McBride B.W., 2010. Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010, 945785, https://doi.org/10.1155/2010/945785.
16. Intergovernmental Panel on Climate Change (IPCC), 2014. Summary for policymakers. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (UK) and New York, NY (USA).
17. Julliand V., de Fombelle A., Drogoul C., Jacotot E., 2001. Feeding and microbial disorders in horses: Part 3 – Effects of three hay:grain ratios on microbial profile and activities. J. Equine Vet. Sci. 21, 543–546, https://doi.org/10.1016/S0737-0806(01)70159-1.
18. Kamalak A., Canbolat O., Sahin M., Gurbuz Y., Ozkan C.O., 2005. The effect of polyethylene glycol (PEG 8000) supplementation on in vitro gas production kinetics of leaves from tannin containing trees. South Afr. J. Anim. Sci. 35, 229–237, https://doi.org/10.4314/sajas.v35i4.3964.
19. Kane E.D., 2009. Beta-carotene: an essential nutrient for horses? Adv. Equine Nutr. 4, 51–60.
20. Kara K., 2015. In vitro methane production and quality of corn silage treated with\ maleic acid. Ital. J. Anim. Sci. 14, 3994, https://doi.org/10.4081/ijas.2015.3994.
21. Kara K., 2016. Effect of dietary fibre and condensed tannins concentration from various fibrous feedstuffs on in vitro gas production kinetics with rabbit faecal inoculum. J. Anim. Feed Sci. 25, 266–272, https://doi.org/10.22358/jafs/65563/2016.
22. Kara K., Aktuğ E., Özkaya S., 2016. Ruminal digestibility, microbial count, volatile fatty acids and gas kinetics of alternative forage sources for arid and semi-arid areas as in vitro. Ital. J. Anim. Sci. 15, 673–680, https://doi.org/10.1080/1828051X.2016.1249420.
23. Kara K., Baytok E., 2017. Effect of different levels of psyllium supplementation to horse diet on in vitro fermentation parameters and methane emission. J. Fac. Vet. Med. Istanbul Univ. 43, 12–18, https://doi.org/10.16988/iuvfd.255208.
24. Kara K., Güçlü B.K., Baytok E., 2015. Comparison of nutrient composition and anti methanogenic properties of different Rosaceae species. J. Anim. Feed Sci. 24, 308–314, https://doi.org/10.22358/jafs/65613/2015.
25. Kara K., Özkaya S., Erbaş S., Baytok E., 2017. Effect of dietary formic acid on the in vitro ruminal fermentation parameters of barley-based concentrated mix feed of beef cattle. J. Appl. Anim. Res. https://doi.org/10.1080/09712119.2017.1284073.
26. Karsli M.A., Bingöl N.T., 2009. The determination of planting density on herbage yield and silage quality of Jerusalem artichoke (Helianthus tuberosus L.) green mass (in Turkish). Kafkas Univ. Vet. Fak. Derg. 15, 581–586.
27. Kays S.J., Nottingham S.F., 2007. Classification, identification, and distribution. In: Biology and Chemistry of Jerusalem Artichoke: Helianthus tuberosus L. CRC Press. Boca Raton, FL (USA), pp. 29–34, https://doi.org/10.1201/9781420044966.ch3.
28. Kholif A.E., Baza-García L.A., Elghandour M.M.Y., Salem A.Z.M., Barbabosa A., Dominguez-Vara I.A., Sanchez-Torres J.E., 2016. In vitro assessment of fecal inocula from horses fed on high-fiber diets with fibrolytic enzymes addition on gas, methane, and carbon dioxide productions as indicators of hindgut activity. J. Equine Vet. Sci. 39, 44–50, https://doi.org/10.1016/j.jevs.2015.11.006.
29. Konopiński T., Bormann J. (Editors), 1937. Domestic Animal Nutrition (in Polish). Wydawnictwo Wielkopolskiej Izby Rolniczej. Poznań (Poland), pp. 155–156.
30. Lima F.G., Haraguchi M., Pfister J.A., Guimaraes V.Y., Andrade D.D.F., Ribeiro C.S., Costa G.L., Araujo A.L.L., Fioravanti M.C.S., 2013. Weather and plant age affect the levels of steroidal saponin and Pithomyces chartarum spores in Brachiaria grass. Int. J. Poisonous Plant Res. 2, 45–53.
31. Macheboeuf D., Jestin M., Chenost M., 1997. Comparison of in vitro digestion of hays with horse caecal and sheep rumen fluids. Reprod. Nutr. Dev. 37 (Suppl. 1), 57–58, https://doi.org/10.1051/rnd:19970738.
32. Makkar H.P.S., Blümmel M., Becker K., 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and their implication in gas production and true digestibility in vitro techniques. Br. J. Nutr. 73, 897–913, https://doi.org/10.1079/BJN19950095.
33. Menke K.H., Steingass H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Develop. 28, 7–55.
34. Murray J.-A.M.D., Bice R.K.T., Moore-Colyer M.J.S., 2010. The effect of particle size on the in vitro fermentation of different ratios of high-temperature dried lucerne and sugar beet pulp incubated with equine faecal inocula. Anim. Feed Sci. Technol. 162, 47–57, https://doi.org/10.1016/j.anifeedsci.2010.09.001.
35. Nozière P., Graulet B., Lucas A., Martin B., Grolier P., Doreau M., 2006. Carotenoids for ruminants: From forages to dairy products. Anim. Feed Sci. Technol. 131, 418–450, https://doi.org/10.1016/j.anifeedsci.2006.06.018.
36. NRC, 2001. Nutrient Requirements of Dairy Cattle. 7th Revised Edition. National Academy Press. Washington, DC (USA), https://doi.org/10.17226/9825.
37. NRC, 2007. Nutrient Requirements of Horses. 6th Revised Edition. National Academy Press, Washington, DC (USA), https://doi.org/10.17226/11653.
38. Razmkhah M., Rezaei J., Fazaeli H., 2017. Use of Jerusalem artichoke tops silage to replace corn silage in sheep diet. Anim. Feed Sci. Technol. 228, 168–177, https://doi.org/10.1016/j.anifeedsci.2017.04.019.
39. Reynoso C.R., Mora O., Nieves V., Shimada A., de Mejía E.G., 2004. β-carotene and lutein in forage and bovine adipose tissue in two tropical regions of Mexico. Anim. Feed Sci. Technol. 113, 183–190, https://doi.org/10.1016/j.anifeedsci.2003.11.007.
40. Rodriguez-Amaya D.B., 1999. A Guide to Carotenoid Analysis in Foods. International Life Sciences Institute Press. Washington, DC (USA).
41. Shaver R., 1997. Nutritional risk factors in the etiology of left displaced abomasum in dairy cows: a review. J. Dairy Sci. 80, 2449–2453, https://doi.org/10.3168/jds.S0022-0302(97)76197-6.
42. Stauffer M.D., Chubey B.B., Dorrell D.G., 1980. Growth, yield and compositional characteristics of Jerusalem artichoke as it relates to biomass production. Am. Chem. Soc. Div. Fuel. Chem. 25, 193–203.
43. Sunvold G.D., Hussein H.S., Fahey G.C. Jr, Merchen N.R., Reinhart G.A., 1995. In vitro fermentation of cellulose, beet pulp, citrus pulp, and citrus pectin using fecal inoculum from cats, dogs, horses, humans, and pigs and ruminal fluid from cattle. J. Anim. Sci. 73, 3639–3648, https://doi.org/10.2527/1995.73123639x.
44. Sweeney C.R., 2012. In vivo and in vitro digestibility of a complete pelleted feed in horses. Master of Science Thesis. The Faculty of California Polytechnic State University. San Luis Obispo, CA (USA), https://doi.org/10.15368/theses.2012.167.
45. Szpunar-Krok E., Bobrecka-Jamro D., Grochowska S., Buczek J., 2016. Yield of the aboveground parts and tubers of Jerusalem artichoke (Helianthus tuberosus L.) depending on plant density. Acta Sci. Pol. Agricultura 15(3), 69–78.
46. Wina E., Muetzel S., Becker K., 2005. The impact of saponins or saponin-containing plant materials on ruminant productions: A review. J. Agric. Food Chem. 53, 8093–8105, https://doi.org/10.1021/jf048053d.
47. Vador N., Vador B., Hole R., 2012. Simple spectrophotometric methods for standardizing ayurvedic formulation. Indian J. Pharm. Sci. 74, 161–163, https://doi.org/10.4103/0250-474X.103852.
48. Van Soest P.J., Robertson J.B., Lewis B.A., 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597, https://doi.org/10.3168/jds.S0022-0302(91)78551-2
49. Yang L., He S.Q., Corscadden K., Udenigwe C.C., 2015. The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. Biotechnol. Rep. 5, 77–88, https://doi.org/10.1016/j.btre.2014.12.004.
50. Yusuf R.O., Noor Z.Z., Abba A.H., Hassan M.A.A., Din M.F.M., 2012. Greenhouse gas emissions: quantifying methane emissions from livestock. Am. J. Eng. Appl. Sci. 5, 1–8, https://doi.org/10.3844/ajeassp.2012.1.8.