ORIGINAL PAPER
Muscle fibre membrane lipid composition in musculus biceps femoris of pigs reared in indoor or outdoor systems
O. Ali 1  
,   Z. Petrási 1,   T. Donkó 1,   H. Fébel 2,   M. Mézes 3,   A. Szabó 1, 4
 
More details
Hide details
1
Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Kaposvár Campus, 7400 Kaposvár, Hungary
2
Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Nutrition and Nutrition Physiology, 2053, Herceghalom, Hungary
3
Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Feed Safety, Gödöllő Campus, 2103 Gödöllő, Hungary
4
Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, 7400 Kaposvár, Hungary
CORRESPONDING AUTHOR
O. Ali   

Hungarian University of Agriculture and Life Sciences, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Kaposvár Campus, 7400 Kaposvár, Hungary
Publication date: 2021-07-10
 
J. Anim. Feed Sci. 2021;30(3):238–247
 
KEYWORDS
TOPICS
ABSTRACT
Two fundamentally different keeping systems, outdoor and indoor (10 weaned-pigs/system), were used with a quasi-identical feeding process. At 120 kg live body weight, animals underwent a computerized tomography scanning, during which musculus biceps femoris and blood samples were collected to determine the fatty acid (FA) profile of skeletal muscle phospholipids and plasma oxidative stability, respectively. The growth showed a fallback in the outdoor rearing system (another 8 days were needed) during the finishing stages. From the total body volume (cm3), the muscle (%) increased and fat (%) decreased in outdoor animals. The FA total saturation level, total monounsaturation level and thrombogenicity index were higher in muscular phospholipids. In contrast, proportional decreases in totals of polyunsaturation and omega-6 FAs, and in the unsaturation and peroxidation indices were detected. Among omega-3 FAs, C18:3n3 and C22:6n3 proportions were higher in outdoor pigs, and thus, the omega-6:omega-3 ratio declined. The outdoor rearing system did not influence the plasma antioxidant system. Overall, outdoor production altered the skeletal muscle fibre membrane FA profile and total body characteristics, but it compromised the pig growth.
ACKNOWLEDGEMENTS
The publication is supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (BO/00871/19). This research was partly funded by the Ministry of Human Resources (EFOP-3.6.3-VEKOP-16-2017-00008).
CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.
 
REFERENCES (54)
1.
Andrés A.I., Cava R., Mayoral A.I., Tejeda J.F., Morcuende D., Ruiz J., 2001. Oxidative stability and fatty acid composition of pig muscles as affected by rearing system, crossbreeding and metabolic type of muscle fibre. Meat Sci. 59, 39–47, https://doi.org/10.1016/s0309-....
 
2.
Andresen N., Ciszuk P., Ohlander L., 2001. Pigs on grassland: animal growth rate, tillage work and effects in the following winter wheat crop. Biol. Agric. Hortic. 18, 327–343, https://doi.org/10.1080/014487....
 
3.
Beattie V.E., O’Connell N.E., Moss B.W., 2000. Influence of environmental enrichment on the behaviour, performance and meat quality of domestic pigs. Livest. Prod. Sci. 65, 71–79, https://doi.org/10.1016/S0301-....
 
4.
Bee G., Guex G., Herzog W., 2004. Free-range rearing of pigs during the winter: Adaptations in muscle fiber characteristics and effects on adipose tissue composition and meat quality traits. J. Anim. Sci. 82, 1206–1218, https://doi.org/10.2527/2004.8....
 
5.
Botsoglou N.A., Fletouris D.J., Papageorgiou G.E., Vassilopoulos V.N., Mantis A.J., Trakatellis A.G., 1994. Rapid, sensitive and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food and feedstuff samples. J. Agric. Food Chem. 42, 1931–1937, https://doi.org/10.1021/jf0004....
 
6.
Bunter K.L., Bennett C., Luxford B.G., Graser H.-U., 2008. Sire breed comparisons for meat and eating quality traits in Australian pig populations. Animal 2, 1168–1177, https://doi.org/10.1017/S17517....
 
7.
Christie W.W., 1982. A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. J. Lipid Res. 23, 1072–1075, https://doi.org/10.1016/S0022-....
 
8.
Dostálová A., Svitáková A., Bureš D., Vališ L., Volek Z., 2020. Effect of an outdoor access system on the growth performance, carcass characteristics, and longissimus lumborum muscle meat quality of the Prestice Black-Pied pig breed. Animals 10, 1244, https://doi.org/10.3390/ani100....
 
9.
Enfält A.-C., Lundström K., Hansson I., Lundeheim N., Nyström P.E., 1997. Effects of outdoor rearing and sire breed (Duroc or Yorkshire) on carcass composition and sensory and technological meat quality. Meat Sci. 45, 1–15, https://doi.org/10.1016/s0309-....
 
10.
Fernández M., Ordóñez J.A., Cambero I., Santos C., Pin C., de la Hoz L., 2007. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 101, 107–112, https://doi.org/10.1016/j.food....
 
11.
Folch J., Lees M., Sloane Stanley G.H., 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509, https://doi.org/10.1016/S0021-....
 
12.
Gentry J.G., McGlone J.J., Miller M.F., Blanton J.R., 2004. Environmental effects on pig performance, meat quality, and muscle characteristics. J. Anim. Sci. 82, 209–217, https://doi.org/10.2527/2004.8....
 
13.
Gustafson G.M., Stern S., 2003. Two strategies for meeting energy demands of growing pigs at pasture. Livest. Prod. Sci. 80, 167–174, https://doi.org/10.1016/S0301-....
 
14.
Guy J., Rowlinson P., Chadwick J., Ellis M., 2002. Growth performance and carcass characteristics of two genotypes of growing-finishing pig in three different housing systems. Anim. Sci. 74, 493–502, https://doi.org/10.1017/S13577....
 
15.
Hoffman L.C., Styger E., Muller M., Brand T.S., 2003. The growth and carcass and meat characteristics of pigs raised in a free-range or conventional housing system. S. Afr. J. Anim. Sci. 33, 166–175, https://doi.org/10.4314/sajas.....
 
16.
Högberg A., Pickova J., Andersson K., Lundström K., 2003. Fatty acid composition and tocopherol content of muscle in pigs fed organic and conventional feed with different n6/n3 ratios, respectively. Food Chem. 80, 177–186, https://doi.org/10.1016/s0308-....
 
17.
Hung C., Bronec C., Napoli E., Graham J., Stanhope K.L., Marsilio I., Giron M.C., Havel P.J., Giulivi C., 2018. Adipose depot-specific effects of ileal interposition surgery in UCD-T2D rats: unexpected implications for obesity and diabetes. Biochem. J. 475, 649–662, https://doi.org/10.1042/BCJ201....
 
18.
Jonsäll A., Johansson L., Lundström K., 2001. Sensory quality and cooking loss of ham muscle (M. biceps femoris) from pigs reared indoors and outdoors. Meat Sci. 57, 245–250, https://doi.org/10.1016/s0309-....
 
19.
Juska R., Juskiene V., Leikus R., 2013. The influence of a free-range housing system on pig growth, carcass composition and meat quality. J. Appl. Anim. Res. 41, 39–47, https://doi.org/10.1080/097121....
 
20.
Karpiesiuk K., Falkowski J., 2008. Reaction of fatteners to different management conditions. Rocz. Nauk. PTZ 4, 65–75, http://ptz.icm.edu.pl/download... (accessed on July 25, 2021).
 
21.
Kozera W., Karpiesiuk K., Bugnacka D., Falkowski J., Milewska W., 2016. Production performance of pigs reared in different systems and fed increased energy content diets with or without green alfalfa. S. Afr. J. Anim. Sci. 46, 70–76, https://doi.org/10.4314/sajas.....
 
22.
Kuchmak M., Dugan L.R., 1963. Phospholipids of pork muscle tissues. J. Am. Oil Chem. Soc. 40, 734–736, https://doi.org/10.1007/BF0260....
 
23.
Laudadio V., Tufarelli V., 2010. Influence of substituting dietary soybean meal for dehulled-micronized lupin (Lupinus albus cv. Multitalia) on early phase laying hens production and egg quality. Livest. Sci. 140, 184–188, https://doi.org/10.1016/j.livs....
 
24.
Lawrence R.A., Burk R.F., 1978. Species, tissue and subcellular distribution of non Se-dependent glutathione peroxidase activity. J. Nutr. 108, 211–215, https://doi.org/10.1093/jn/108....
 
25.
Lebret B., 2008. Effects of feeding and rearing systems on growth, carcass composition and meat quality in pigs. Animal 2, 1548–1558, https://doi.org/10.1017/S17517....
 
26.
Lebret B., Dourmad J.Y., Mourot J., Pollet P.Y., Gondret F., 2014. Production performance, carcass composition, and adipose tissue traits of heavy pigs: Influence of breed and production system. J. Anim. Sci. 92, 3543–3556, https://doi.org/10.2527/jas.20....
 
27.
Lebret B., Guillard A.-S., 2005. Outdoor rearing of cull sows: effects on carcass, tissue composition and meat quality. Meat Sci. 70, 247–257, https://doi.org/10.1016/j.meat....
 
28.
Lemke U., Mergenthaler M., Rössler R., Huyen L.T.T., Herold P., Kaufmann B., Zárate A.V., 2008. Pig production in Vietnam – a review. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 3, 023, https://doi.org/10.1079/PAVSNN....
 
29.
Leray C., Andriamampandry M., Gutbier G., Cavadenti J., Klein-Soyer C., Gachet C., Cazenave J.P., 1997. Quantitative analysis of vitamin E, cholesterol and phospholipid fatty acids in a single aliquot of human platelets and cultured endothelial cells. J. Chromatogr. B Biomed. Sci. Appl. 696, 33–42, https://doi.org/10.1016/s0378-....
 
30.
Ma X., Lin Y., Jiang Z., Zheng C., Zhou G., Yu D., Cao T., Wang J., Chen F., 2010. Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids 38, 95–102, https://doi.org/10.1007/s00726....
 
31.
Maribo H., Nielsen B., Friis Nielsen M.B., 2018. Danbred Duroc crossbred finishers grow faster than Pietrain crossbreds. SEGES Danish Pig Res. Cent. 1–10, https://pigresearchcentre.dk/-... (accessed on April 23, 2021).
 
32.
Martínez-Miró S., Tecles F., Ramón M., Escribano D., Hernández F., Madrid J., Orengo J., Martínez-Subiela S., Manteca X., Cerón J.J., 2016. Causes, consequences and biomarkers of stress in swine: an update. BMC Vet. Res. 12, 171, https://doi.org/10.1186/s12917....
 
33.
Martino G., Mugnai C., Compagnone D., Grotta L., Del Carlo M., Sarti F., 2014. Comparison of performance, meat lipids and oxidative status of pigs from commercial breed and organic crossbreed. Animals 4, 348–360, https://doi.org/10.3390/ani402....
 
34.
McGlory C., Calder P.C., Nunes E.A., 2019. The influence of omega-3 fatty acids on skeletal muscle protein turnover in health, disuse, and disease. Front. Nutr. 6, 144, https://doi.org/10.3389/fnut.2....
 
35.
Nilzén V., Babol J., Dutta P.C., Lundeheim N., Enfält A.-C., Lundström K.., 2001. Free range rearing of pigs with access to pasture grazing – effect on fatty acid composition and lipid oxidation products. Meat Sci. 58, 267–275, https://doi.org/10.1016/s0309-....
 
36.
Olsson V., Andersson K., Hansson I., Lundström K., 2003. Differences in meat quality between organically and conventionally produced pigs. Meat Sci. 64, 287–297, https://doi.org/10.1016/S0309-....
 
37.
Parunović N., Petrović M., Matekalo-Sverak V., Trbović D., Mijatović M., Radović C., 2012. Fatty acid profile and cholesterol content of m. longissimus of free-range and conventionally reared Mangalitsa pigs. S. Afr. J. Anim. Sci. 42, 101–113, http://www.scielo.org.za/pdf/s... (accessed on April 23, 2021).
 
38.
Patton B.S., Huff-Lonergan E., Honeyman M.S., Crouse J.D., Kerr B.J., Lonergan S.M., 2008. Effects of deep-bedded finishing system on market pig performance, composition and pork quality. Animal 2, 459–470, https://doi.org/10.1017/S17517....
 
39.
Quinn P.J., Boldyrev A.A., Formazuyk V.E., 1992. Carnosine: Its properties, functions and potential therapeutic applications. Mol. Asp. Med. 13, 379–444, https://doi.org/10.1016/0098-2....
 
40.
Rahman I., Kode A., Biswas S.K., 2006. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 1, 3159–3165, https://doi.org/10.1038/nprot.....
 
41.
Rioux V., 2016. Fatty acid acylation of proteins: specific roles for palmitic, myristic and caprylic acids. OCL 23, D304, https://doi.org/10.1051/ocl/20....
 
42.
Sather A.P., Jones S.D.M., Schaefer A.L., Colyn J., Robertson W.M., 1997. Feedlot performance, carcass composition and meat quality of free-range reared pigs. Can. J. Anim. Sci. 77, 225–232, https://doi.org/10.4141/A96-09....
 
43.
Skjervold H., Grønseth K., Vangen O., Evensen A., 1981. In vivo estimation of body composition by computerized tomography. Z. Tierzüchtg. Züchtgsbiol. 98, 77–79, https://doi.org/10.1111/j.1439....
 
44.
Strudsholm K., Hermansen J.E., 2005. Performance and carcass quality of fully or partly outdoor reared pigs in organic production. Livest. Prod. Sci. 96, 261–268, https://doi.org/10.1016/j.livp....
 
45.
Tomažin U., Batorek-Lukač N., Škrlep M., Prevolnik-Povše M., Čandek-Potokar M., 2019. Meat and fat quality of Krškopolje pigs reared in conventional and organic production systems. Animal 13, 1103–1110, https://doi.org/10.1017/S17517....
 
46.
Ulbricht T.L.V., Southgate D.A.T., 1991. Coronary heart disease: seven dietary factors. Lancet 338, 985–992, https://doi.org/10.1016/0140-6....
 
47.
Urbańczyk J., Hanczakowska E., Świątkiewicz M., 2005. The effect of organic feeding on carcass and meat quality of fattening pigs. J. Anim. Feed Sci. 14, Suppl. 1, 409–412, https://doi.org/10.22358/jafs/....
 
48.
Voss A., Reinhart M., Sankarappa S., Sprecher H., 1991. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J. Biol. Chem. 266, 19995–20000, https://doi.org/10.1016/S0021-....
 
49.
Wei H.K., Zhou Y., Jiang S., Tao Y.X., Sun H., Peng J., Jiang S., 2013. Feeding a DHA-enriched diet increases skeletal muscle protein synthesis in growing pigs: association with increased skeletal muscle insulin action and local mRNA expression of insulin-like growth factor 1. Br. J. Nutr. 110, 671–680, https://doi.org/10.1017/S00071....
 
50.
Weichselbaum C.T.E., 1946. An accurate and rapid method for the determination of proteins in small amounts of blood serum and plasma. Am. J. Clin. Pathol. 16, 40–49, https://doi.org/10.1093/ajcp/1....
 
51.
White H.M., Richert B.T., Latour M.A., 2013. Impacts of nutrition and environmental stressors on lipid metabolism. In: R.V. Baez (Editor). Lipid Metabolism. IntechOpen, London (UK), pp. 211–232, https://doi.org/10.5772/51204.
 
52.
Won K.B., Han D., Lee J.H., Choi S., Chun E.J., Park S.H., Han H.W., Sung J., Jung H.O., Chang H.J., 2020. Atherogenic index of plasma and coronary artery calcification progression beyond traditional risk factors according to baseline coronary artery calcium score. Sci. Rep. 10, 21324, https://doi.org/10.1038/s41598....
 
53.
Wood J.D., Enser M., Fisher A.V., Nute G.R., Sheard P.R., Richardson R.I., Hughes S.I., Whittington F.M., 2008. Fat deposition, fatty acid composition and meat quality: a review. Meat Sci. 78, 343–358, https://doi.org/10.1016/j.meat....
 
54.
Zhang S., Knight T.J., Stalder K.J., Goodwin R.N., Lonergan S.M., Beitz D.C., 2009. Effects of breed, sex and halothane genotype on fatty acid composition of triacylglycerols and phospholipids in pork longissimus muscle. J. Anim. Breed. Genet. 126, 259–268, https://doi.org/10.1111/j.1439....
 
ISSN:1230-1388