0.857
IF5
0.900
IF
Q3
JCR
0.92
CiteScore
0.405
SJR
Q2
SJR
20
MNiSW
165.24
ICV
ORIGINAL PAPER
 
CC-BY 4.0
 
 

Digestive physiology, resting metabolism and methane production of captive Indian crested porcupine (Hystrix indica)

K. B. Hagen 1,  
S. Hammer 2,  
S. Frei 1,  
S. Ortmann 3,  
R. Głogowski 4,  
M. Kreuzer 5,  
M. Clauss 1  
 
1
University of Zurich, Vetsuisse Faculty, Clinic for Zoo Animals, Exotic Pets and Wildlife, Winterthurerstr. 260, 15 8057 Zurich, Switzerland
2
Naturschutz-Tierpark Görlitz, Zittauerstrasse 43, D-02826 Görlitz, Germany
3
Leibniz Instiute for Zoo and Wildlife Research (IZW) Berlin, Alfred-Kowalke Str. 17, 10315 Berlin, Germany
4
Warsaw University of Life Sciences (WULS) – SGGW, Faculty of Animal Sciences, Department of Animal Breeding, Ciszewskiego 8, 02-786 Warsaw, Poland
5
ETH Zurich, Institute of Agricultural Sciences, Universitätsstr. 2, 8092 Zurich, Switzerland
J. Anim. Feed Sci. 2019;28(1):69–77
Publish date: 2019-02-20
KEYWORDS
TOPICS
ABSTRACT
Limited physiological measurements exist for the digestive physiology of porcupines. We measured CH4 emission in three captive Indian crested porcupines (Hystrix indica; 16.1 ± 2.7 kg) fed a diet of pelleted lucerne, and measured feed intake, digestibility, and digesta mean retention time (MRT) of a solute and three particle markers (<2, 10 and 20 mm). Marker excretion patterns suggested secondary peaks indicative of caecotrophy, with MRTs of 26.4 h for the solute and 31.5, 26.8 and 26.2 h for the three particle markers, respectively. At a dry matter intake of 58 ±10 g/kg body mass0.75/day, porcupines digested 49 and 35% organic matter and neutral detergent fibre, respectively, which is in the lower range of that expected for horses on a similar diet. The respiratory quotient (CO2/O2) was 0.91, the resting metabolic rate 274 kJ/kg body mass0.75/day, and CH4 emissions averaged at 8.16 l/day and 17.9 l/kg dry matter intake. Accordingly, CH4 yield was so high that it resembled that of a hypothetical ruminant of this body mass. The results are in accord with general understanding of hystricomorph rodent digestive physiology, and support recent findings that CH4 production may be more prominent in rodents than previously thought.
CORRESPONDING AUTHOR
M. Clauss   
University of Zurich, Vetsuisse Faculty, Clinic for Zoo Animals, Exotic Pets and Wildlife, Winterthurerstr. 260, 15 8057 Zurich, Switzerland
 
REFERENCES (31):
1. Alkon P.U., Degen A.A., Cohen A., Pollak H., 1986. Seasonal energy requirements and water intakes of Indian crested porcupines (Hystrix indica) in captivity. J. Mammal. 67, 333–342, https://doi.org/10.2307/138088....
2. AOAC International, 2016. Official Methods of Analysis of the AOAC International. 20th Edition. Gaithersburg, MD (USA).
3. Arends A., McNab B.K., 2001. The comparative energetics of ‘caviomorph’ rodents. Comp. Biochem. Physiol. A 130, 105–122, https://doi.org/10.1016/S1095-....
4. Björnhag G., 1987. Comparative aspects of digestion in the hindgut of mammals. The colonic separation mechanism (CSM) (a review). Dtsch. Tierärztl. Wochenschr. 94, 33–36.
5. Clauss M., Besselmann D., Schwarm A., Ortmann S., Hatt J.-M., 2007. Demonstrating coprophagy with passage markers? The example of the plains viscacha (Lagostomus maximus). Comp. Biochem. Physiol. Part A. Mol. Integr. Physiol. 147, 453–459, https://doi.org/10.1016/j.cbpa....
6. Clauss M., Schiele K., Ortmann S., Fritz J., Codron D., Hummel J., Kienzle E., 2014. The effect of very low food intake on digestive physiology and forage digestibility in horses. J. Anim. Physiol. Anim. Nutr. 98, 107–118, https://doi.org/10.1111/jpn.12....
7. Felicetti L.A., Shipley L.A., Witmer G.W., Robbins C.T., 2000. Digestibility, nitrogen excretion, and mean retention time by North American porcupines (Erethizon dorsatum) consuming natural forages. Physiol. Biochem. Zool. 73, 772–780, https://doi.org/10.1086/318094.
8. Franz R., Soliva C.R., Kreuzer M., Hummel J., Clauss M., 2011. Methane output of rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus) fed a hay-only diet: Implications for the scaling of methane production with body mass in nonruminant mammalian herbivores. Comp. Biochem. Physiol. Part A. Mol. Integr. Physiol. 158, 177–181, https://doi.org/10.1016/j.cbpa....
9. Frei S., Ortmann S., Kreuzer M., Hatt J.-M., Clauss M., 2017. Digesta retention patterns in geese (Anser anser) and turkeys (Meleagris gallopavo) and deduced function of avian caeca. Comp. Biochem. Physiol. Part A. Mol. Integr. Physiol. 204, 219–227, https://doi.org/10.1016/j.cbpa....
10. Fritz J., Hummel J., Kienzle E., Arnold C., Nunn C., Clauss M., 2009. Comparative chewing efficiency in mammalian herbivores. Oikos 118, 1623–1632, https://doi.org/10.1111/j.1600....
11. Gorgas M., 1967. Comparative anatomical studies on the gastrointestinal tract of Sciuromorpha, Hystricomorpha and Caviomorpha (Rodentia) (in German: Vergleichend-anatomische Untersuchungen am Magen-Darm-Kanal der Sciuromorpha, Hystricomorpha und Caviomorpha (Rodentia)). Z. Wiss. Zool. 175, 237–404.
12. Hackstein J.H.P., van Alen T.A., 1996. Fecal methanogens and vertebrate evolution. Evolution; Int. J. Org. Evol. 50, 559–572, https://doi.org/10.1111/j.1558....
13. Hagen K.B., Besselmann D., Cyrus-Eulenberger U., Vendl C., Ortmann S., Zingg R., Kienzle E., Kreuzer M., Hatt J.-M., Clauss M., 2015a. Digestive physiology of the plains viscacha (Lagostomus maximus), a large herbivorous hystricomorph rodent. Zoo Biol. 34, 345–359, https://doi.org/10.1002/zoo.21....
14. Hagen K.B., Frei S., Ortmann S., Głogowski R., Kreuzer M., Clauss M., 2019. Digestive physiology, resting metabolism and methane production of captive juvenile nutria (Myocastor coypus). Eur. J. Wildl. Res. 65, 2, https://doi.org/10.1007/s10344....
15. Hagen K.B., Tschudin A., Liesegang A., Hatt J.-M., Clauss M., 2015b. Organic matter and macromineral digestibility in domestic rabbits (Oryctolagus cuniculus) as compared to other hindgut fermenters. J. Anim. Physiol. Anim. Nutr. 99, 1197–1209, https://doi.org/10.1111/jpn.12....
16. Haim A., Van Aarde R.J., Skinner J.D., 1990a. Metabolic rates, food consumption and thermoregulation in seasonal acclimatization of the Cape porcupine (Hystrix africaeaustralis). Oecologia 83, 197–200, https://doi.org/10.1007/BF0031....
17. Haim A., Van Aarde R.J., Skinner J.D., 1990b. Metabolism and thermoregulation in the cape porcupine, Hystrix africaeaustralis. Physiol. Zool. 63, 795–802, https://doi.org/10.1086/physzo....
18. Hirakawa H., 2001. Coprophagy in leporids and other mammalian herbivores. Mammal Rev. 31, 61–80, https://doi.org/10.1046/j.1365....
19. Holleman D.F., White R.G., 1989. Determination of digesta fill and passage rate from non absorbed particulate phase markers using the single dosing method. Can. J. Zool. 67, 488–494, https://doi.org/10.1139/z89-07....
20. Johnson J.L., McBee R.H., 1967. The porcupine cecal fermentation. J. Nutr. 91, 540–546, https://doi.org/10.1093/jn/91.....
21. Lovegrove B.G., 2001. The evolution of body armor in mammals: plantigrade constraints of large body size. Evolution 55, 1464–1473, https://doi.org/10.1111/j.0014....
22. McNab B.K., 1978. Energetics of arboreal folivores: physiological problems and ecological consequences of feeding on an ubiquitous food supply. In: G.G. Montgomery (Editor). The Ecology of Arboreal Folivores. Smithsonian Institution Press. Washington DC (USA), pp. 153–162.
23. Mori E., Bozzi R., Laurenzi A., 2017. Feeding habits of the crested porcupine Hystrix cristata L. 1758 (Mammalia, Rodentia) in a Mediterranean area of Central Italy. Eur. Zool. J. 84, 261–265, https://doi.org/10.1080/247502....
24. Pei Y.-X., Wang D.-H., Hume I.D., 2001. Selective digesta retention and coprophagy in Brandt‘s vole (Microtus brandti). J. Comp. Physiol. B 171, 457–464, https://doi.org/10.1007/s00360....
25. Riccardi C., Bruno E., 1996. Food intake of captive porcupines Hystric cristata (Rodentia, Hystricidae). Atti Soc. Tosc. Sci. Nat., Mem. B. 103, 81–83.
26. Schwarm A., Ortmann S., Wolf C., Clauss M., 2009. No distinct difference in the excretion of large particles of varying size in a wild ruminant, the banteng (Bos javanicus). Eur. J. Wildl. Res. 55, 531–533, https://doi.org/10.1007/s10344....
27. Sever Z., 1986/1987. Water and energy economies of captive porcupines and their implications under natural conditions. Israel J. Zool. 34, 97–98.
28. Thielemans M.-F., François E., Bodart C., Thewis A., 1978. Gastrointestinal transit in the pig : measurement using radioactive lanthanides and comparison with sheep (in French: Mesure du transit gastrointestinal chez le porc a l‘aide des radiolanthanides. Comparaison avec le mouton.) Ann. Biol. Anim. Biochim. Biophys. 18, 237–247, https://hal.archives-ouvertes.....
29. van Jaarsveld A.S., 1983. Aspects of the digestion in the Cape porcupine. S. Afr. J. Anim. Sci. 13, 31–33.
30. van Jaarsveld A.S., Knight-Eloff A.K., 1984. Digestion in the porcupine Hystrix africaeaustralis. S. Afr. J. Zool. 19, 109–112, https://doi.org/10.1080/025418....
31. Vispo C., Hume I.D., 1995. The digestive tract and digestive function in the North American porcupine and beaver. Can. J. Zool. 73, 967–974, https://doi.org/10.1139/z95-11....
 
CITATIONS (1):
1. Digestive anatomy, physiology, resting metabolism and methane production of captive maras (Dolichotis patagonum)
Marcus Clauss, Katharina Hagen, Samuel Frei, Sylvia Ortmann, Arne Lawrenz, Robert Głogowski, Julia Fritz, Edmund Flach, Michael Kreuzer
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
ISSN:1230-1388