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ABSTRACT

The potential of mammary and renal purine metabolite exerction as a technique for the assess-
ment of microbial protein supply in ruminant animals is reviewed. Data reported in the literature
tends to support the validity of the assumptions of the technique that purines entering the duodenum
arc essentially microbial in origin and that following metabolism, purine catabolites (collectively
allantoin, hypoxanthine, vric acid and xanthine} are quantitatively recovered in urine. The most
convincing experimental evidence suggests that secretion of purine metabolites in milk is of little
value for the assessment of microbial protein supply duc a mumal correlation with milk yield. In
contrast. use of urinary purine metabolite excretion does appear to provide estimates of microbial
protein supply that, are in general, consistent with values derived using standard in vivo procedures.
However, the accuracy of this approach is largely dependent on obtaining representative samples of
rumen microbes and the ability to account for variations in non-renal excretion and endogenous
purine losses. In conclusion, urinary purine metabolitc excretion appears to represent a valid non-
invasive procedure to assess relative differences, rather than quantitative estimates of microbial pro-
tein supply in ruminant animals,
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INTRODUCTION

Over recent years considerable emphasis has been placed on the protein fee-
ding of ruminant animals, since dietary crude protcin is often the most cxpensive
feed ingredient, and feeding excessive amounts of protein can depress reproduc-
tive efficiency (Ferguson and Chalupa, 1989), increase energy requirements (Old-
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ham, 1984) and elevate environmental nitrogen (N) emissions (Broderick and Clay-
ton, 1997). In ruminant animals the quantity of amino acids available for absorp-
tion is determined by the quantity of microbes synthesized in the rumen, the amount
of undegraded dietary protein and to a lesser extent, by endogenous protcin rea-
ching the duadenum (Satter, 1986). On maost diets, microbial protcin (MP) is the
major component of duodenal protein and is thought to account for proportionate-
ly between 0.42 and 0.93 of the total protein flux entering the small intestine (Stern,
1986). Since prediction of MP supply 1s central to accurate protein feeding, errors
in its prediction can lead to an inefficient utilization of dietary protein.

Traditionally, apparently digested CP (N in feed minus N in facces) has been
used to describe the availability of amino acids to the ruminant animal. During the
last decade several new protein evaluation systems have been proposed {c.g., Insti-
tt National de la Recherche Agronomique (INRA), 1989; National Reseach Council
(NRC). 1989; Agricultural and Food Rescarch Council (AFRC), 1992; Madsen et
al., 1995; Tuori et al., 1998) in order to improve the accuracy of protein feeding to
ruminant animals by accounting for both microbial and host tissue N metabolism.
Despite differences in terminology and calculation methods, modern metaboliza-
ble protein evaluation systems are conceptually similar in that they all attempt to
predict the quantity of amino acids available for absorption derived from both
microbial and dietary protein escapmg degradation in the rumen. All systems uscd
for routinc formulation of ruminant diets usc an cmpirical approach to predict MP
based essentially on encrgy availability in the rumen assuming cither a constant
energetic efficiency of microbial protein synthesis (EMPS) (INRA, 1989; NRC,
1989: Madsen et al., 1995; Tuori et al., 1998) or that corrected for the effects of
fecding level {AFRC, 1692).

However, although the yicld of MP synthesized in the rumen is generally con-
sidered to be proportional to the energy available for fermentation, EMPS is sub-
ject to considerable variation. Based on 262 observations in sheep and cattle (a
large proportion of which were obtained from sheep at maintenance) and omitting
estimates derived from experiments with rumen ammonia concentrations below
3.5 mmol/l, Agricultural Reseach Council (1984) reported that EMPS varied be-
tween 19.3 and 44.7 (CV 39%) g microbial-N/kg OM apparently digested in the
rumen. Assuming that encrgy supply is the largest constraint on rumen MP synthe-
sis, this variability can Jargely be attributed to differences in rumen outflow rates
and the microbial maintenance cocfficient (Dewhurst and Webster, 1992}, and that
introduced duc to errors associated with the quantification of MP supply. In adds-
tion to feeding Ievel (Robinson et al., 1985; Chen et al., 1992a), differences in
carbohydrate and N sources, defaunation, and dietary supplements of various agents
such as 1onophores and branch chain fatty acids may influence EMPS (refer to
Sniffen and Robinson, 1987; Hoover and Stokes, 1991; Clark et al., 1992; Cham-
berlain and Choung, 1995), Consequently, duc to the influence of these factors and



SHINGFIELD K.J. 171

the inadequacics of techniques used to determine the rate and extent of OM fer-
mentation in the rumen (Dewhurst et al., 1995) nonc of the modern protein cvalu-
ation systems can provide an accurate prediction of MP supply for all animats and
feeding situations.

Dewhurst et al. (1996) recently highlighted the rcquirement for an on-farm
diagnostic marker of MP supply in order to improve the efficiency of dietary N
utilization in ruminant animals. Standard in vive procedures used to assess MP
supply arc unsuitable for this purpose, and therefore use of purine metabolite ¢x-
cretion considered to reflect rumen MP synthesis could have considerable poten-
tial since it 1s non-invasive. Use of the technique assumes that, purines entering
the duodenum are essentially microbial in origin and that the end products of
purine metabolism arc quantitatively recovered in urine or milk. The aim of the
current paper is to review purinc metabolism in ruminant animals and provide
a critical evaluation of the validity of the assumptions and potential sources of
error for the estimation of MP supply based on purine metabolite excretion.

QUANTIFICATION OF MICROBIAL PROTEIN SUPPLY
Microbia! marker methods

Standard ir vivo procedures used for estimating MP supply are based on the
use of internal or external microbial markers i conjunction with measurcments of
duodenal digesta flow, assessed cither directly using a T-type duodenal cannula or
estimated using indigestible markers. Internal markers include intergral structural
componcents such as 2, 6-diaminopimelic acid (DAPA) in bacterial or 2-aminoethyl-
phosphonic acid (AEPA) in protozoal cells or intra-cellular components such as
RNA, DNA or individual pyrimidine and purine bascs. External marker techniques
arc based on cellular incorporation of radio-isotopes (e.g. **S, "N, **P and “H) to
label microbial cells. Despite a wide choice of markers the principle is the same
for all methods, in that the ratio of marker;N concentrations in rumen microbes 1s
compared with that in duodenal digesta to calculate the proportion of duodenal N
of microbial origin.

The menits and demerits of individual microbial markers have been documen-
ted (Stern and Hoover, 1979; Broderick and Merchen, 1992} and thercfore consi-
derations and concerns of traditional marker methods are only discussed in brief,
Irrespective of type, an tdeal microbial marker should be unique to microorga-
nisms, not absorbed, biologically stable, easily mcasured, present at a constant
ratio in rumen bactcria, protozoa and fungi, and between different stages of micro-
bial growth (Horigane and Horiguchi, 1990). However, none of the current marker
techniques satisfy all of these criteria becausc the ratio of marker:N concentra-
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tions are markedly different between rumen bacteria and protozoa, and in the case
of internal markers also between fluid and particulate associated bacteria (Brode-
rick and Merchen, 1992). Furthermore, additional concerns exist with the use of
DAPA (Dufva etal., 1982; Rahnema and Theurer, 1986), AEPA (Ling and Buttery,
1978; Whitelaw et al., 1984; Horigane and Horiguchi, 1990) and nucleic acids
(NA) (Smith et al., 1978; Ling and Buttery, 1978; McAllan, 1982) due to their
presence in feedstuffs.

In an attempt to establish the most reliable method for assessing MP, a number
of studies have evaluated several markers simultaneously (e.g. Ling and Buttery,
1978; Siddons et al., 1982; Whitelaw et al., 1984; Dawson et al., 1988; McAllan et
al., 1988; Schonhusen et al., 1995; Robinson et al., 1996). Discrepancies between
estimates of duodenal microbial-N flow based on different markers (Figure 1)
indicate both a lack of precision and accuracy of these techniques, and therefore
estimates can only be considered as relative and not absolute or reference measu-
rements.

400
350%
3003— e
250; i
:zoo;L et |

150

Bacterial N (g/d) DAPA

100 F

:vFIIIIIIj__l‘JJll]]IlllA]llllAjlIllIIJ_lll
0 50 100 150 200 250 300 350 400

Microbial N (g/d) "N

Figure 1. Comparison of markers to assess duodenal microbial (bacterial) nitrogen flow

a) Comparison of bacterial and microbial nitrogen flows (g/d) reported in the literature based on
diaminopimelic acid (DAPA) and '*N, respectively.

Data derived from Allam et al., 1982 (m), Siddons et al., 1982 (O), Dawson et al., 1988 ([0), Sadik

etal., 1990 (+) and Faichney et al., 1997 (®). Dotted line indicates y = x
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Figure 1. Comparison of markers to assess duodenal microbial (bacterial) nitrogen flow

b) Comparison of bacterial and microbial nitrogen flows (g/d) reported in the literature based on
diaminopimelic acid (DAPA) and ribonucleic acid (RNA), respectively.

Data derived from Ling and Buttery, 1978 ([0), Cockburn and Williams, 1984 (Q), McAllan and

Smith, 1984 (m), McAllan et al., 1988 (@), Stokes et al., 1991 (4) and Robinson et al., 1996 (0).

Dotted line indicates y = x

It is also important to recognise the requirements of these methods for surgical-
ly modified experimental animals (rumen fistulas and post-rumen cannulas) and
this has remained the largest drawback with existing microbial marker techniques.
In addition to welfare concerns, and uncertainities as to how closely these animals
reflect their physiologically normal counterparts, these procedures are unsuitable
for large scale multi-factorial experiments. Furthermore, it could be argued that
the inability to simultaneously assess the influence of a number factors on the
efficiency of MP synthesis represents the largest constraint of current attempts to
accurately predict MP supply.

Ruminant animals receive an abundant supply of potentially absorbable exoge-
nous nucleic acids from microbes synthesized in the rumen. Following digestion
and absorption from the small intestine, purine bases may enter catabolic path-
ways leading to formation of the purine metabolites (collectively allantoin, uric
acid, xanthine and hypoxanthine) generally referred to as purine derivatives (PD).
Early observations of Terrione and Mourot (1931) indicated a close correlation
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Figure 1. Comparison of markers to assess duodenal microbial (bacterial) nitrogen flow

¢) Comparison of microbial nitrogen flows (g/d) reported in the literature based on purines and "*N.
Data derived from Cecava etal., 1991 (@), Vanhatalo, 1991 (00), Pérez et al., 1996a (M) and Pérez et
al., 1997 (O). Dotted line indicates y = x

between urinary allantoin excretion, quantitatively the most important PD in rumi-
nant species and protein intake in sheep. Morris and Ray (1939) demonstrated that
urinary allantoin and uric acid excretion in sheep, goats and cows declined during
a 7 day starvation period, suggesting an association with certain aspects of the
diet. Further studies, reporting a close correlation between urinary allantoin excre-
tion and rumen NA concentrations (Topps and Elliot, 1965; Mudgal and Taneja,
1977; Turchinski, 1980) and nutrient intake (e.g. Vercoe, 1976; Antoniewicz, 1983;
Coto et al., 1984; Lindberg, 1985; Chen et al., 1992a; Giesecke et al., 1994) have
provided further indirect evidence to support initial suggestions that urinary allan-
toin excretion could be used as an indicator of rumen MP production (Topps and
Elliot, 1965; Rys et al., 1975).

Use of PD excretion to assess MP supply assumes that purines entering the
duodenum are essentially microbial in origin, limited variations in microbial
purine content and digestibility, and that following metabolism, PDs are quanti-
tatively recovered in urine or milk. However, there are a number of sources of
error due to 1) feed purines that escape rumen degradation, ii) variations in the
purine content of rumen microbes, iii) variable partitioning of PDs between re-
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nal, mammary and enteric excretory routes and iv} excretion of PD due to en-
dogenous purine metabolism,

FATE OF NUCLEIC ACIDS IN THE RUMEN

In common with marker methods based on RNA, or individual purine or pyri-
midine bases, use of the PD techniquc is dependent on NA entering the duedenum
being cssentially microbial in origin. Ingested feedstuffs contain between 1-50 g
NA/kg DM (McAllan, 1982} and are the major source of NAs entering the rumen.
Only small amounts of purines, uric acid and allantoin are present in forages (Fer-
guson and Terry, 1954). In addition to dictary NAs, cndogcnous NAs present in
mucosal secretions and sloughed epithelia cells will also contribute to non-micro-
bial NAs in the rumen, although in negligible amounts (McAllan, 1982).

Smith and McAllan {1970) reported that the RNA:DNA ratio in rumen fluid was
similar to that in rumen bacteria and was independent of dict, indicating negligible
amounts of dictary NA in rumen fluid. Other studics have demonstrated that the ratio
of RNA:DNA in duodenal digesta is similar to the distinctive ratio of rumen bacte-
ria, indicating that NAs entering the duodenum are essentially microbial in origin
(Mugdal et al., 1978; McAllan, 1982), since dietary or infused exogenous NA ente-
ring the rumen are rapidly degraded into nucleotides, nucleosides and free bases
{(McAllan and Smith, 1973a). End products of rumen NA digestion can subsequently
be utilized by rumen microbes as a source of carbon and N {Belasco, 1954; Jurtshuk
ct al,, 1958) or directly incorporated as a NA precursor (Smith and Mathur, 1973).

While rumen bacteria can digest most purine and pyrimidine bases, Jurtshuk et
al. {1958) reported that adenine was neither decarboxylated nor deaminated after
in vitro incubation with a washed cell suspension of bovine rumen bacteria. Fur-
ther studies have also demonstrated that adenine and xanthine, in particular, are
partially resistant to degradation by rumen bacteria (McAllan and Smith, 1973b).
With respect to PDs, allantoin (Belasco, 1958), uric acid, and to a lesser extent
hypoxanthine (Jurtshuk ct al., 1958) arc cxtensively degraded in the rumen to ace-
tic acid, carbon dioxide and ammoma. Urinary allantoin excretion has been shown
to be independent of intra-ruminal infusions of allantoin in sheep and steers main-
taincd by intra-gastric infusion (Chen et al., 1990b), indicating that even n the
absence of a functional rumen microflora, allantoin is degraded, possibly duc to
the activities of the microbial population associated with the rumen epithelium.

Ruminal escape of dietary nucleic acids

In vivo studies using *’P (Smith et al., 1978; John and Ulyatt, 1984) labelled
NAs have indicated that non-microbial NA may contribute up to proportionately
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0.15 of duodenal purine flow. Koenig (cited by Schelling et al., 1982) reported that
ruminal escape of NAs contained in lucerne hay was relatively minor, except im-
mediately after feeding. Schelling and Byers (1984) evaluating the use of cytosine
as a microbial marker, also noted that some dietary adenine can escape rumen
degradation. Pérez et al. (1996b) attempted to assess the dictary contribution to the
duodenal flow of purine bascs based on in sitv measurements of purine degrada-
bilty corrected for microbial contamination. Based on this approach, it was esti-
mated that for typical forage and cereal ingredients, proportionately between 0.03
and 0.23 of purines contained in these feeds could potentially cscape degradation
in the rumen. In the case of fish meal and distillery by-products, this proportion
was estimated to be between .20 and 0.40. However, these valucs are subject to
criticism duc to the inherent deficiencies of the in sifu technique to assess rumen
degradability (Nocck, 1988; Michalet-Doreau and Ould-Bah, 1992), uncertaini-
ties concerning true rumen fractional outflow rates and dramatically lower micro-
bial enzyme activities associated with incubated feed particles than rumen ingesta
(Huhtanen et al., 1998). In an attcmpt to overcome the deficiencies of this ap-
proach, Calsamiglia et al. (1996) assessed degradation of purines contained in
lucerne, maize, barley and a wide range of protein supplements using continous
cultures of rumen microbes, Degradation of purines contained in most feeds was
complete, with the exception of feather meal, and accounted for proportionately
between 0.002 and 0.063 of purine flow in fermenter effluent. Examimation of the
most recent data reported in the Hterature suggests that ruminal escape of dietary
NA represents a significant, but relatively minor source of purines cntering the
duodenum, the extent of which is potentially higher in animals fed diets contai-
ning rclatively high proportions of rumen undegraded protein.

PURINE CONTENT OF RUMEN MICROBES

Usc of the PD technique is based on the assumption that the ratio of NA:N is
constant in rumen bacteria and protozoa. Concentrations of NA and N (65-100
and 70-110 mg/g OM, respectively) in rumen bacteria (Smith and McAllan, 1974,
Czerkawski, 1976; Storm and Orskov, 1983} tend to be marginally higher (50-90
and 40-90 mg/g OM, respectively) than in rumen protozoa (Czerkawski, 1976;
Olubobokun et al., 1988; Stokes et al., 1991; Martin ¢t al.,, 1994; Robinson et al.,
1996). Some studies have reported similar ratios of RNA:N (McAllan, 1982) or
purine:N (Czerkawski, 1976; Volden ct al., 1999) in rumen bacteria and proto-
zoa, while other studies have indicated lower ratios in protozoa (Ling and But-
tery, 1978; Arambel et al., 1982; Storm and @Orskov, 1983; Firkins ct al., 1987,
Stokes ct al., 1991; Kanjanapruthipong and Leng, 1998). Protozoa can contri-
bute to proportionately between 0.10 and 0.40 of MP supply (Harrison et al.,
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1979; Steinhour et al., 1982; Punia ct al., 1988, 1992; Punia and Leibholz, 1994,
Faichney et al., 1997), and therefore lower purine:N ratios identified in protozoa
(Firkins et al., 1987; Kanjanapruthipong cited by Kanjanapruthipong and Leng,
1998), tentatively suggests that exclusive use of bacterial purine:N ratios would
underestimate microbial N flow,

Assumptions of a constant purine:N in rumen bacteria are also subject to
criticism, since the RNA:N ratio of liquid associated bacteria (LAB) varies ac-
cording to growth conditions in the rumen (Bergen et al., 1982; Bates and Ber-
gen, 1984), feed intake (John, 1984), diet (Bates et al., 1985) and the techniques
uscd to isolate rumen bacteria (Mcerry and McAllan, 1983). Furthermore, ratios
of RNA: DNA (John, 1984} and RNA:N (Susmel ct al., 19932} in LAB have
been shown to vary diurnally. Craig et al. {1987b) also reported significant changes
in the ratio of purine:N ratios in LAB and solid associated bacteria (SAB) during
the feeding cycle of dairy cows, with the lowest ratios occuring immediately
post-feeding. Subsequent studies have demonstrated that the extent of diurnal
variations in the purine:N ratio of bacterial fractions is dependent on feeding
frequency, being much lower in steers fed twice-hourly than twice-daily (Ceca-
va ¢t al., 1990).

In general, carly studies reported in the literature have used LAB to discern
fundamental information concerning rumen MP production, due to the technical
difficultics of obtaining SAB (Olubobokun and Craig, 1990). This approach has
been shown to be crroncous duc to marked differences in the chemical composi-
tion of LAB and SAB {e.g. Merry and McAllan, 1983; Legay-Carmier and Bau-
chart, 1989; Volden and Harstad, 1998) and the significant and variable contri-
bution of SAB to microbial N flow (Craig et al., 1987a; Pérez et al., 1998).

Clark et al. (1992) based on 50 observations reported large variations (CV 0.298)
in the purine:N ratio of rumen bacteria. Some of this variation can be attributed to
the techniqucs used to isolate rumen bacteria, since purine:N ratios have consis-
tently been shown to higher in LARB than SAB (e.g. Craig et al., 1987b; Legay-
Carmicr and Bauchart, 1989; Cecava ct al., 1990; Klusmeyer ct al., 1991; Martin-
Orle et al., 1998). A proportion of this variatton is incvitably duc to experimental
diet (Pérez et al., 1997, 1998; Volden et al., 1999), but random cxpcrimental errors
associated with the determination of bacterial purine and N concentrations may
also explain much of this variation. Purine concentrations of rumen microbes have
traditionally been determined using a spectrophotometric method (Zinn and Owens,
1986) which can lead to erroneous estimates due to vanable purine recoveries
{Makkar and Becker, 1999; Obispo and Dchority, 1999). IFurthermore, the purine:N
ratios of pure cultures of rumen bacteria have recently been shown to be three-fold
higher than corresponding values of mixed rumen bacteria, implying that determi-
nation of purine:N ratios in rumen bacteria may potentially be underestimated due
to contamination by feed particles (Obispo and Dehority, 1999).
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The importance of obtaining representative values of punine:N ratio of rumen
microbes is fundamental to the accuracy of estimates of MP supply based on the
PD technique or derived using purines as a microbial marker. Ratios of purine:N in
rumen bacteria arc subject to considerable vanation (Table 1), but the extent of
which is due to real sources and that introduced as a result of sampling and analyti-
cal errors remains unclear. Chen et al. (1992a) proposed the use of a rumen mi-
crobe purine-N:N ratio of 0.116, while Kanjanapruthipong, cited by Kanjana-
pruthipong and Leng (1998) reported an equivalent ratio of 0.0824, indicating that

TABLE 1

Mean purine and nitrogen content and the ratio of purine:N reported for rumen microbes
Microbial source Purine content N content Purine:N Reterence

mg/g DM mg/g DM glg
LARB 51.0 64.2 0.795 Firkins et al. (1987)
SAB 571 737 Q.775
Protozoa 257 58.6 0.438
LAB 52.7 82.6 0.638 Cecava et al. (1990)
SAB 57.2 78.1 0.733
Mixed rumen bacteria 72.8 77.1 0.944 Clark et al. (1992}
Mixed rumen bacteria 14.3! 829 0.173 Calsamiglia et al. (1996)
Mixed rumen bacteria 14.3 66.4 0.215 Pérez et al, (1996a)
LAB 19.5° 67.5 0.289 Pérez et al. (1997}
SAB 16.2° 63.5 0.256
LAB 15.87 57.7 0.274 Pérez et al. (1998)
SAB 14.7° 60.9 0.242
Pure bacterial strains 298 52.6 0.589 Obispe and Dehority (1999)
Mixed rumen bacteria 13.8 66.0 0.209
Mixed rumen bacteria t4.4 75.2 0.193
LAB 17.3° 68.2 (0.253 Martin-Orte et al. {1998)
SAB 11.5° 64.7 0.178
LAR 10.0 58.1 0.172 Volden et al. (1999)
SAB 8.2 62.4 0.131
Protozoa 10.2 66.8 (0.153

! calcutated assuming a mean molar adenine:guanine ratio of 1:1.70 for mixed rumen bacteria { Volden
et al.. 1999)

* calculared assuming a molar adenine:guanine ratio of 1:1.63 and 1:1.76, for LAB and SAB,
respectively (Volden et al., 1999)

prediction of MP supply can be biased by the usc of a purine:N ratio isolated from
a single microbial fraction. In common with other microbial markers, obtaining
representative samples of rumen microbes is fundamental to the accuracy of the
PD technique. While it is important to understand and quantify the sources of
variation affecting the purine: N ratio of rumen microbes, it 1s also important to
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recognise that obtaining such information requires the use of surgically modified
animals and immediately negates the inherent non-invasive advantages of the PD
technique,

DIGESTION OF NUCLEIC ACIDS

Microbial and dietary purines escaping ruminal degradation are generally ab-
sorbed in the form of nucleosides (Wilson and Wilson, 1962; McAllan, 1980).
Duodenal NA bases, nucleosides and nucleotides in ruminants arc degraded to
varying degrees by pancreatic ribonuclease, pancreatic nucleases, phosphodieste-
rases, nucleotidase and nucleosidase secreted in the small intestine. Pancreatic
ribonuclease activity is particularly high in the ruminant (Barnard, 1969) indica-
ting their capacity to digest large quantitics of NAs. Nucleosides, NAs and free
bases are subscquently absorbed from the intestinal lumen (Fox, 1978). Free NAs
entering the small intestine are almost entirely digested and absorbed in sheep
(Ellis and Blechner, 1969b; Jackson et al., 1976) and in cattle (McAllan, 1980).
Studies in ruminants have also indicated that the apparent digestibility coefficient
between the proximal duodenum and distal ileum is higher for microbial RNA
{0.87-0.97) than microbial DNA (0.75-0.85; Condon et al., 1970; Smith and McAl-
lan, 1971; Storm and @rskov, 1983; Storm et al., 1983). Disappearance of RNA
due to digestion and absorption has been shown to be almost complcete as digesta
enters the jejunum (McAllan, 1980; Schinhusen et al., 1999). When corrected for
endogenous losses, true digestibility coefficients of 0.859, 0.780-0.871 and 0.913,
have been reported for microbial NA-N (Storm and @rskov, 1983), RNA-N (Storm
and @rskov, 1983; Schénhusen et al., 1999) and purines {Chen et al., 1990a), re-
spectively.

Digested nucleosides and free bases, with the exception of hypoxanthine are
almost entirely absorbed before reaching the terminal ileum in ruminants (McAl-
lan, 1980; 1982). In vitro studies of punine absorption in the hamster have shown
that hypoxantine, xanthine and to a lesser extent uric acid are preferentially excre-
ted rather than absorbed across the intestine (Berlin and Hawkins, 1968), while
studies in sheep have indicated that the capacity of the small intestine to absorb
allantoin s limited {Chen et al., 1990b). Nucleic acids, free bases {except xan-
thinc) and PDs cntering the large intestine do not appear to be absorbed duc to
extensive degradation by indigenous microbes (Sorenscn, 1960; Ellis and Bleich-
ner, 1969a; Chen et al., 1990a), and therefore purines excreted in faeces appear to
be primarily derived from microbes residing in the caccum (Surra et al., 1997b).
Furthermore, variations in the supply of NAs entering the caecum and the extent
of hindgut fermentation do not appear to affect urinary PD) excretion, but there is
evidence to suggest that it is positively influenced by the flow of undigested fibre
in the duodenum (Surra et al., 1997b).
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FATE OF ABSORBED PURINES

Exogenous absorbed purines undergo extensive degradation during their
passage through intestinal mucosa (Wilson and Wilson, 1962), due to the presence
of guanine deaminase (EC 3.5.4.3.; Henderson and Paterson, 1973), adenosine
deaminase (EC. 3.5.4.4; Barman, 1969) and xanthine oxidase (EC 1.2.3.2.; Rous-
sos, 1963; Al-Khalidi and Chaglassian, 1965; Chen ¢t al., 1990¢) in intestinal
mucosa. The activity of yanthine oxidase that catalyses the irreversible oxidation
of xanthine and hypoxanthine to uric acid is particularly important, since it deter-
mines the substrate pool available to salvage pathways that allow purine moities to
be re-utilized for tissue NA synthesis. Studies in rats have shown that only adenine
can cross the intestinal mucosal membrane (Savaiano et al., 1980), but an absence
of nucleotides. nucleosides (except inosine), guaninc and adenine in ovine and
bovine portal blood {Balcells et al., 1992), suggests that this may not occur in
ruminant specics.

Concentrations of non-oxidized PDs (hypoxanthine and xanthine) in portal blood
have been shown to be much lower in bovine than ovine species (Balcells et al.,
1992), and 1s consistent with observations that the activity of xanthine oxidase is
higher in the intestinal mucosa of cattle than sheep (Al-Khahdi and Chaglassian.
1965). Based on these observations, it appears that purine compounds are cata-
bolized immediately after absorption in the bovine and therefore intestinal is the
only potential site for salvage of exogenous purines (Verbic¢ ct al., 1990; Balcells
et al., 1992). In contrast, hypoxanthine and xanthine are present in both portal and
peripheral blood in sheep (Chen ct al., 1990c; Balcells et al., 1992) as a conse-
qugnee of only minor xanthine oxidase activity in intestinal mucosa and moderate
activity in hepatic tissue (Al-Khahidi and Chaglassian, 1965). Conscquently, it ap-
pears that in the ovine, absorption of exogenous purines leads to the formation of
metabolites which can potentially be incorporated into tissue NAs.

PURINE METABOLISM

Purines arc synthesized in mammalbian tissues to replace obligatory losses in-
curred during cellular NA turnover and to satisfy purine accretion requirements du-
ring cellular growth. Synthesis of purine ribonucleosides occurs through two dis-
uncly different routes, commonly referred to as the de nove and salvage pathways.

De-novo synthesis

De novo purine synthesis has been extensively reviewed in the literature (refer
to Hartman, 1970; Gots, 1971; Henderson and Patterson, 1973) and is only briefly
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documented. Tissue de novo purine synthesis procecds using 5’-phosphoribosyl-
1’-pyrophosphate (PRPP) as a building block onto which glycine, glutaminc, as-
partate, one carbon unit and carbon dioxide precursors are incorporated to yield a
purine ring (Lehninger, 1982). On completton of the purine ring, inosing 5’-mono-
phosphate (the nucleotide of hypoxanthine) is produced which can be converted to
guanine or adenine nucleosides (Figure 2). However, de novo purine synthesis is
absent in certain tissues such as bone marrow in the rabbit (Smellic ct al., 1958;
Thomson ct al.. 1960} and lecukocytes in humans (Scott, [962; Williams, 1962),
and therefore purine requirements of these tissues are satisficd by other tissues,
such as the hver which has been shown to be a major site of purine synthesis
{Murray. 1971).

Salvage pathways

Purines liberated during tissuc NA catabolism and exogenous purines derived
from the gut, can be re-utilized vig salvage pathways initiated by purinc phos-
phoribosvitransferases (PRTases), enzymes that are present in most mammalian
tissues {Burridge et al., 1976}, Studies in sheep using radio-labelled exogenous
purines have confirmed that absorbed purine moities can be salvaged and re-uti-
lized for the synthesis of nucleotides and NAs (Condon ct al., 1970; Smith et al.,
1974; Razzaque et al., 1981). Even in the absence of absorbed exogenous purines,
salvage pathways still operate, avoiding the considerable cnergetic costs associa-
ted with de novo synthesis (Mura et al., 1987). In humans, it is estimated that up to
90% of the free purines produced during tissuc NA turnover may be recycled vig
salvage pathways (Lehninger, 1982).

Purinc salvage catalysed by PR 7ases results in the formation of nucleotide units
from adenine, guanine and hypoxanthine precursors (Figure 2). Xanthine may be
salvaged by hvpoxanthine-guanine PRTase to form xanthine monophosphate (Gots,
1971), but this reaction 1s very slow due to a low affinity of xanthine for this
enzyme (Hitchings, 1978). Purine bases can also be salvaged by combining with
ribose 1’-phosphate to yield their respective nuclecosides. The reactions catalysed
by nucleoside phosphorylases are quantitatively much less important than those
proceeding vie PRTases (Lehninger, 1982). Purine nucleotides derived from de
nove synthesis or salvage pathways can be converted into nucleotides of other
purine bases vie a common intermediate inosine 5’-monophosphate. This mecha-
nism enables cclls to maintain the desired nucleotide pool compeosition.

The energetic cost of a mole of purine mononucleotides via salvage is 2 ATP,
while de nove synthesis of adenosine 5’-monophosphate (AMP) and guanosine
5"-monophosphate {(GMP) requires 8 and 7 ATP, respectively (Lehninger, 1982).
in the presence of dietary (exogenous) purings it appears that enzyme activiles
involved in purine salvage are enhanced, while those integral to de novo synthe-
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sis are effectively switched off (Leleiko et al., 1979). Furthermore, administra-
tion of allopurinol (an allostearic inhibitor of xanthine oxidase), resulting in an
accumulation of hypoxanthine, has also been shown to stimulate purine salvage
enzymes (D’Mello, 1982). In the light of the considerable energetic advantage
of salvaging purine bases compared to their de novo synthesis, salvage of ab-

De novo synthesis

l Xanthosine

monophosphate
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Figure 2. Purine metabolic pathways in ruminant tissues
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sorbed purines would be expected to be fully exploited in the ruminant (D’Mello,
1982; Kahn and Nolan, 1993).

Purine satvage is subject to feed-back control of purine nucleotides. Once cel-
lular levels of purine nucleotides have been attained, further nucleotide loading
will mnhibit adenine-PRTase and hypoxanthine-guanine PRTase activities (Mur-
ray. 1971). Regulation of enzymatic activities also influences the cellular uptake
of salvage substrates due to their uptake being proportional to PR7ase activities
(Gots, 1971). Once cellular purine nucleotide requirements are met, surplus nucle-
osides and free bascs are diverted towards catabolic pathways leading to the for-
mation of purine metabolites,

Purine catabolism

Turnover of ccllular DNA tends to be relatively low, while turnover rates of
certain RNA molecules such as mRNA are particularly rapid. During cellular
NA turnover, DNA and RNA are hydrolysed by nucleases and diesterases to
yield mono-nucleotides and nucleosides, of which the latter can be re-utilized
and incorporated into NAs or further catabolized. Degradation of nucleoside
molecules involves enzymatic cleavage of glycosidic bonds between purine ba-
ses and sugar moieties, yielding purine bases which can be either salvaged or
further oxidized.

Catabolism of AMP and adenine leads to the formation of hypoxanthine, that
is further oxidized to xanthinc and uric acid in the prescnce of xanthine oxidase
{Figure 2). Guanine nucleosides and bases enter the catabolic pathway as xan-
thine, which in the presence of xanthine oxidase is oxidized to uric acid. Finally,
in the presence of uricase, uric acid is oxidized to liberate allantoin. the major
purine catabolite in ruminant spectes. In most mammals, allantoin is the end
product of purine catabolism, but purine catabolic pathways can be restricted to
uric acid such as in primates, or can proceed beyond allantoin to glyoxylic acid
and urea in evolutionary less developed animals such as fish.

PURINE METABOLITE EXCRETION IN RUMINANT SPECIES
Renal clearance

The appearance of hypoxanthine, xanthine and uric acid in ovine (Lindberg
et al.,, 1989; Chen et al,, 1990a,¢; Lindberg and Jacobssen 1990; Balcells et al.,
1991) and caprine (Lindberg, 1985, 1991) urine indicates a high renal clearance
of these compounds. Further studics have established a PD clearance rate con-
stant of approximately 33%/h in sheep (Chen ¢t al., 1991} and cattlc (Giesecke
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et al., 1993). Short term infusions of exogenous purines in sheep have esta-
blished that purine metabolites are excreted in urine within 2-3 h after their ap-
pearance in plasma (Chen et al., 1997). Greger et al. (1976) reviewed the avai-
lable literature and concluded that the renal clearance of allantoin occured with-
in the glomerulus of the mammalian kidney without subsequent reabsorption or
secretion along the nephron. However, more recent observations in sheep have
indicated that the renal clearance of allantoin 1s marginally, but significantly less
than 100%, suggesting that tubular reabsorption of allantoin accounts for pro-
portionately 0.05-0.09 of filtered load (Faichney and Welch, 1994).

The extent of urinary PD excretion is governed by the concentration of these
compounds in plasma, the glomerular filtration rate (GFR) and the transport
maximum from the renal tubule (Chen et al., 1997). Examination of the relation-
ship between plasma purine metabolite concentrations and urinary PD cxcretion
has indicated considerable between-animal variation in the GFR of PDs ranging
between 137-145 (Chen et al,, 1991) and 140-233 1/d {Chen ¢t al., 1997) for
sheep nourished by intra-gastric infusion, and between 65-158 1/d (Chen et al.,
1991; Surra ct al., 1997a) for conventionally fed animals. Studies in steers have
also indicated large variations in the GFR of allantoin (range 847-1155 1/d) that
were independent of a functional rumen (Gicsecke et al., 1993), tentatively sug-
gesting that renal clearances are unaffected by the supply of PDs entering the
bloodstream.

Renal clearance of uric acid involves complicated post-filtration secretion
and reabsorption processes occuring in the nephron and the Loop of Henle in the
mammalian kidney (Greger et al., 1976). Despite these complications, measure-
ments in steers have suggested that the GFR of uric acid (mean 965 1/d) ap-
proaches that of allantoin {mcan 984 1/d; Gicsecke et al., 1993). In contrast,
studies in sheep have demonstrated that the renal clearance of uric acid (671 1/d),
hypoxanthine (289 1/d) and xanthine (11.2 1/d) is different to that of allantoin
(113 1/d), a finding explained by variations in net tubular secretion or reabsorp-
tion of individual PDs (Surra ct al., 1997a).

Abomasal infusions of exogenous purines in sheep (Chen et al., 1990a; Bal-
ccllsetal., 1991; Chenetal., 1997) and cattle (Verbi¢ et al.,, 1990; Vagnoni et al.,
1997) have indicated that renal clearance is quantitatively the most important
excretory route, accounting for proportionately between 0.83 and 0.88 of ab-
sorbed exogenous purines. In cattle, the proportion of PDs excreted as allantoin
is relatively constant ranging between 0.82 and 0.93 (Chen et al., 1990c, 1992¢;
Verbic et al., 1990; Giesecke et al., 1994; Vagnoni and Broderick, 1997; Vagnoni
ct al., 1997: Shingfield and Offer 1998a.b; Valadares et al., 1999), while the
remainder 1s cxcreted as uric acid, since bovine urine contains only trace amounts
of xanthine and hypoxanthine (Susmel ct al., 1994; Shingficld and Qffer, 1999a).
Pooling data from several dairy cow experiments (n = 7) has also demonstrated
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that urinary PD excretion (Y, mmol/d) is closcly correlated with urinary allanto-
in excretion (x, mmoi/d), where:

Y = 11,190 (s.c. 3.588) + 1.105 (s.c. 0.014) x
(n=180,r=0.986, P < 0.001; Shingfield et al., unpublished data).

This relationship indicates that for cattle, urinary PD excretion can be accurate-
ly predicted from measurcments of allantoin alone, confirming the suggestions of
Dewhurst et al. (1996).

In contrast, the composition of PDs excreted in the urine of sheep and goats
appears to be more variable. Chen et al. (1990a) reported that in sheep the propor-
tion of PDs cxcreted as allantoin incrcased with exogenous purine supply, while
catabolism of endogenous and exogenous purines have resulted in different PD
profiles in caprine urine (Lindberg, 1991). These findings tend to suggest that the
PD composition of caprine and ovine urine reflects differences in the site of me-
tabolite formation due to changes in the relative proportions of endogenous and
exogenous purines entering catabolic pathways. However, experimental obscrva-
tions are conflicting. Condon and Hatficld (1970) reported increases in non-allan-
toin metabolites in ovine urine at high duodenal RNA infusions, while Giesecke et
al. (1984) detected significant increases in hypoxanthine cxcretion of sheep in
response to ducdenal RNA infusions, However, Baleells et al, (1991) reported that
only allantoin excretion increased with incremental increases of duodenal purines
in sheep, a {inding inconsistent with that of Lindberg (1991) and Kahn and Nolan
{1993) indicating that the proportions of PDs were constant over a range of ¢xo-
genous purine supplies in goats and sheep, respectively. Some studics have pro-
vided evidence to suggest that measurements of allantoin alone could be used to
predict the excretion of all PDs in ovine urine (Balcells et al., 1991, Puchala and
Kulasek, 1992). However, the extent of variation in the PD composition of ovine
and caprine urine has lead to the general conclusion that all catabolites need to
measured to accurately assess urinary P excretion in these species (Giesecke et
al.. 1984, Fujihara ct al., 1987; Lindberg et al., 1989). Typical urinary PD cxcre-
tion in ruminant species is presented in Table 2.

Mammary secretion

The presence of purine and pyrimidine metabolites in bovine milk has long
been recognized (Deutsch and Mattsson, 1959), Purine moicties are primarily ex-
creted as allantoin and uric acid, since ruminant milk contains only trace amounts
of xanthine and hypoxanthine (Tiermevyer et al., 1984; Martin-Oruc et al., 1996).
Mammary secretion of allantoin is thought to be due to diffusion from plasma into
the mammary alveolar lnmen (Tiermeyer ¢t al., 1984; Gicsecke ct al., 1994). Uric



TABLE 2

Typical urinary purine metabolite excretion of conventionally fed ruminant species reported in the literature
Species Liveweight Diet OM intake Excretion, mmol/d Reference

kg kg/d PD allantoin
Bovine 603 Lucerne hay and silage based 20.1-22.6 435-561 380-492 Vagnoni and Broderick (1997)
Bovine 629 Lucerne silage based - 423-613 369-535 Valadares et al. (1999)
Bovine Grass silage based 16.5-17.3 357-414 - Huhtanen et al. (1997)
Bovine 611 Grass silage based 18.2-18.4 196-207 178-185 Shingfield and Offer (1998a)
Bovine 567 Grass silage based 14.0-17.6 319-448 275-392 Shingfield and Offer (1998b)
Bovine 560 Grass silage based 13.1-14.1 277-293 254-267 Ahvenjirvi et al. (1999)
Bovine 662 Fescue hay based 6.7-9.6 80-154 68-143 Susmel et al. (1994)
Bovine 639 Fescue hay based 12.0-13.9 191-221 173-195 Susmel et al. (1995)
Bovine 659 Straw based 6.6 98 89 Susmel et al. (1994)
Bovine 539 Straw based 12.7-14.8 214-344 171-282 Shingfield and Offer (1998b)
Caprine 13 Grass hay based 0.14-0.17 3.1-4.6 2.5-3.9 Lindberg (1991)
Caprine 48 Straw based 0.80-1.80 - 12.0-41.0 Lindberg (1985)
Ovine 97 Grass silage based 0.95-1.08 17.2-23.8 - Rinne et al. (1999)
Ovine 45 Lucerne hay based 0.92-0.96 11.6-16.8 9.4-143 Carro et al. (2000)
Ovine 25 Grass hay based 0.37-0.88 4.2-18.0 3.0-14.9 Puchala and Kulasek (1992)
Ovine 60 Grass hay based - 59-15.5 4.7-12.6 Szumacher-Strabel (1998)
Ovine 37 Lucerne hay based 0.44-0.93 5.9-10.6 4.7-11.6 Pérez et al. (1996a)
Ovine 45 Lucerne hay based 1.42-1.51 16.9-20.4 14.8-18.5 Valdés et al. (2000)
Ovine 44 Straw based 0.53-0.94 5.8-11.2 4393 Balcells et al. (1993)
Ovine 51 Straw based 0.81-1.26 12.0-20.7 9.5-16.2 Djouvinov and Todorov (1994)
Ovine 42 Straw based 0.67-0.84 8.5-12.5 6.4-10.6 Pérez et al. (1997)
Ovine 47-58 Straw based 0.64-1.12 8.0-15.2 6.5-12.7 Dapoza et al. (1999)
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acid secreted in milk appears to be derived from plasma and as a consequence of
endogenous mammary purine metabolism (Rosskopf et al., 1991; Giesecke et al.,
1994). Early studies in dairy cows estimated that allantoin secretion in milk ac-
counted for proportionately 0.06-0.07 of that excreted in urine (Kirchgessner and
Kreuzer, 1985; Kirchgessner and Windisch, 1989). Subsequent studies in dairy
cows have reported values of between 0.04 and (.12 (Susmel et al., 1995; Vagnom
and Broderick, 1997; Valadares et al., 1999). However, these cstimatcs are subject
to criticism due to a lack of spectficity of colorimetric based methods used for the
quantification of allantoin in milk and urine. Use of more specific and sensitive
analytical methods based on high performance liquid chromatography have indi-
cated that mammary secretion accounts for proportionately between 0.006-0.03 of
urinary altlantoin excretion in ruminant species {Giesecke et al., 1994; Martin-
Onmic et al,, 1996; Gonda and Lindberg, 1997, Shingfield and Offer, 1998b). Secre-
tion of uric acid in milk has been reported to account for proportionately 0.03 and
0.17 of urinary excretion in cows (Giesecke et al., 1994; Valadares et al., 1999)
and sheep (Martin-Orde ¢t al., 1996), respectively.

Salivary secretion

Based on an assumed salivary flow of 10 I/d, Chen et al. (1990b) estimated
that sceretion of PDs into the gastro-intestinal tract accounted for proportionate-
ly 0.10 of urinary excretion in sheep. Using the same estimate of salivary flow
and intravenous infusions of "*C-adenine to assess purine metabolism, Kahn (cited
by Kahn and Nolan, 1993) reported that salivary PD losses accounted for 0.27 of
that excreted in urine. In contrast, Surra et al. (1997a) using Co-EDTA as a marker
of salivary flow, reported that losses in saliva accounted for only 0.001 of uri-
nary PD) excretion. Large discrepancies between estimates of purine losses via
saliva are difficult to reconcile, since these large differences cannot be satisfac-
torily explained by dietary induced variations (Kay, 1966) or incorrect assump-
tions of salivary flow.

Enteric secretion

In humans uric acid is removed from blood into the gut by direct passage or
via gastro-intestinal sccretions (Sorensen, 1978). Faecal recovery of radioacti-
vity (0.13) following intra-venous infusions of '*C guanine indicate PDs are also
secreted into the gut of pigs {(Simmonds et al., 1973). Kahn and Nolan {1993)
reported that in sheep, urinary recovery (0.19) of intravenously admnistered '*C
adeninc was much lower than the amount of tracer (0.48) entering blood bicar-
bonate. Discepancics between “CO, entering the blood bicarbonate pool and
that which could be accounted for hepatic catabolism of uric acid to allantoin,
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were attributed to microbial degradation of purines scercted in bile and other gas-
tro-intestinal secretions. These findings tentatively suggest that enteric losses of
PDs in ruminants may be quantitatively more important than secretion in milk or
saliva.

IMPLICATIONS
Recovery of exogenous purines

Usc of PD excretton as an index of MP supply is dependent on establishing
the relationship between exogenous purine supply and excretion of purine me-
tabolites, such that any variability in this relationship is known or at least pre-
dictable. Numerous studies have been conducted in order to assess the relation-
ship between duodenal exogenous puring flow and urinary PD excretion, Since
exogenous purines can enter salvage pathways and used as substrates for tissue
NA synthesis in ovine specics (Ellis and Bleichner, 1969b; Condon ct al., 1970;
Smith et al., 1974; Razzaque et al., 1981; Kahn, 1991, cited by Kahn and Notan,
1993), urinary recoverics of infused purines reported in sheep have been subject
to considerable variation (Table 3). Data from early experiments (Antoniewicz
et al., 1980, Gicsecke ct al., 1984; Fujthara et al., 1987) was interpreted assu-
ming a linear relationship between exogenous purine supply and urinary PD ex-
cretion, with the imphication that PD excretion derived from endogenous sour-
ces remains constant across a range of exogenous purine loads. More recent
obscrvations have lead to the suggestion that this relationship is curvi-linear
{Chen et al., 1990a, 1997, Balcclls et al., 1991; Puchaia and Kulasek, 1992;),
due to the contribution of de novo purine synthesis at low cxogenous purme
loads nccessary to compensate for limited amounts of absorbed cxogenous
purines cntering salvage pathways, constituting a net endogenous purinc toss.
Use of quadratic models to fit cxperimental data describing the relationship
between absorption of exogenous purines and urinary PD excretion indicate that
once salvage of exogenous purines operates at a maximal rate, proportionately
between (.81 and 0.87 of absorbed purines are cxcreted as PDs in urine (Chen et
al., 1990a,1997; Balcells et al., 1991). If the models propesed arc correct, then
the corollary is that the complications of determining endogenous PD excretion
in sheep are removed when fed diets supplying in excess of maintenance cnergy
requirements (Figure 3).

In contrast to the observations in sheep, urinary recoverics of infused purines in
cattle tend to be much more consistent (Table 3). Less variation in urinary PD
responses to exogenous purine inputs has been attributed to the confinement of
exogenous purine salvage to the intestinal mucosa, duc to high xanthine oxidase



TABLE 3

Urinary recovery of exogenous purines
Species Purine Intusion Apparent recovery Reference

SOUFCe site PD! allantoin
Bovine Microbial NA Abomasum 0.40-0.78 0.33-0.68 Verbi¢ et al. (1990)
Bovine RNA Duodenum 0.87 0.82 Puchala et al. (1993)
Bovine RNA Duodenum .73 - Beckers and Thewis (1994)
Bovine RNA Abomasum 0.86 ” 0.77 Vagnoni el al. (1997)
Caprine RNA Oral - © 051 Matsumoto and [tabashi (1988)
Caprine RNA Oral 0.53-0.85 0.49-0.78 Lindberg (1991)
Ovine HC Adenine Abomasurn 0.32 - Condon ct al, (1970)
Ovine Adenine Intravenous 0.73 - Kahn (1991); cited by Kahn and Nolan (1993}
QOvine Adenosine and guanosine  Abomasum 0.44-0.83 - Chen et al. (1997)
Ovine HC Microbial NA Rumen 0.15 - Smith et al, (1974)
Ovine HC Microbial NA Rumen 0.34 - Razzaque et al. (1981)
Ovine Microbial NA Abomasum 0.96-1.18 - Fujihara ct al. {1987)
Ovine Microbial NA Abomasum 0.36-0.76 - Chen et al. (1990a)
Ovine RNA Abomasum 0.92-1.10 0.71-0.79 Condon and Hatfield (1970)
Ovine RNA Abomasum - 0.22 Antoniewice et al. (198(0)
Ovine RNA Abomasuim 0.52 0.48 Giesecke et al. (1984)
Ovine RNA Duodenum 0.93 0.88 Balcells et al. (1991)

" refers to purine derivatives calculated as the sum of allantoin, hypoxanthine, uric acid and xanthine
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Figure 3. Relationship between purine absorption and urinary purine derivative (PD) excretion in
sheep based on the data of Chen et al. (1990a).

Solid line indicates urinary PD excretion derived from exogenous and endogenous purines, dotted
line indicates urinary PD excretion derived from endogenous purines

activities in other bovine tissues (Verbic et al., 1990). Use of a quadratic model to
fit experimental data, indicated that proportionately 0.85 of absorbed purines are
excreted as PDs in urine, and that once salvage pathways accounting for 0.22 of
endogenous purine losses are saturated, urinary PD excretion derived from endo-
genous purine metabolism is independent of exogenous purine supply (Verbi¢ et
al., 1990; Figure 4). Assuming that this model is correct, the implication is that
endogenous purine losses have to be taken into account in cattle.

Despite recent observations in cattle that proportionately 0.86 of exogenous
purines were recovered as PDs excreted in the urine (Vagnoni et al., 1997), the
validity of recently proposed models remains largely uncertain. Mean urinary re-
coveries of intravenous allantoin infusions of proportionately between 0.72-0.78
in sheep (Chen et al., 1991; Surra et al., 1997a) and 0.70 in cattle (Giesecke et al.,
1993), tends to raise concerns over the accuracy of the coefficients used to de-
scribe the relationship between purine absorption and urinary PD excretion. Fur-
thermore, Kahn and Nolan (1993) noted that the feedback control of de novo pu-
rine synthesis has not been experimentally verified, and questioned why mammals
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Figure 4. Relationship between purine absorption and urinary purine derivative (PD) excretion in
cattle based on the data of Verbi¢ et al. (1990).

Solid line indicates urinary PD excretion derived from exogenous and endogenous purines, dotted
line indicates urinary PD excretion derived from endogenous purines

in general, and ruminants in particular, need to synthesise any purines de novo, in
light of the abundant supplies of exogenous purines and high energetic costs of
purine biosynthesis.

Endogenous purine losses

Purine metabolites excreted in ruminant urine are primarily derived from ab-
sorbed exogenous purines, but as a consequence of tissue adenosine triphosphate
and NA turnover, a proportion of purine bases are not salvaged and re-utilized, but
enter catabolic pathways, constituting an endogenous loss. Several approaches have
been used to assess urinary purine losses in ruminant animals. Early studies at-
tempted to measure endogenous losses in sheep during periods of fasting (Morris
and Ray, 1939; Walker, 1967; Rys et al., 1973, 1975), but negligible urinary excre-
tion of PDs after several days of fasting, suggests that these estimates are errone-
ous due to extensive purine salvage and a potential reduction in NA turnover asso-
ciated with reduced nutrient availablity. More recently, the intra-gastric infusion
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technique that allows energy and nitrogen requirements of ruminant animals to be
satisfied in the absence of a functional rumen, has been used extensively to esti-
mate endogenous losses in ruminant animals, However estimates obtained using
this approach are also subject to criticism due to concerns of gut wall abnormali-
ties and marked increases in urinary output in animals nourished by intra-gastric
infusion (Giesecke et al., 1984; Puchala and Kulasek, 1992).

Alternatively, endogenous losses have been measured in pre-ruminant animals
based on the assumption that milk is essentially purine-free and that purine sal-
vage pathways are well developed and do not significantly differ with age or ru-
men function. Usc of this approach appears to be valid, since endogenous urinary
PD excretion of milk fed preruminant calves has been shown to be similar to that
of mature cattle (Chen et al., 1990c). Indirect estimates of endogenous purine los-
ses have also been obtained by extrapolation of responses of urinary PD excretion
to digestible OM intake (Laurent and Vignon, 1983), duodenal flows of microbial
NA (Puchala and Kulasck, 1992}, purincs (Beckers and Thewis, 1994) and csti-
mated digestible MP supply (Susmel et al., 1993b). Values reported in the litera-
ture tend to indicate that endogenous urinary PD excretion in cattle (Table 4) 1is
three times higher than that in goats and sheep (Table 5), a finding that has been
attributed to distinct specics differences in blood and tissue xanthine oxidase pro-
files (Chen ct al., 1990c).

Use of measurements reported in the hiterature to account for endogenous pu-
rine losses in conventionally fed ruminants have to be applied with caution, since
the influence of nutricnt availability on the extent of endogenous losses remains
unclear. Endogenous urinary allantoin excretion of ruminant animals maintained
by intra-gastric infusion have in several cases been shown to be independent of N

TABLE 4
Endogenous urinary purine derivative (PD) excretion n cattle
Animal Excretion, pmol/W"™/d Nutrient supply Reference

PD! allantoin

Calves 443-613 329-494 Milk fed calves Chen ct al. (1990c)
Cows 429 - Conventionally fed Susmel et al. (1993b)
Cows 513 424 Intra-gastric infusion Chen et al. (1990¢)
Steers 560 488 Conventionally fed Giesecke et al. (1993)
Steers 531 - Conventionally fed Beckers and Thewis (1994}
Steers - 375-447 Intra-gastric infusion Sibanda ct al. (1982)
Steers 443.408 - Intra-gastric infusion Fujihara et al. (1987)
Steers 428 365 Intra-gastric infusion Verbic et al. (1990)
Sleers 401-571 373-500 Intra-gastric infusion Chen ct al. (1990c¢)

' refers to purine derivatives calculated as the sum of allantoin, hypoxanthing, uric acid and xanthing



TABLE S

Endogenous urinary purine derivative {(PD) excretion in goats and sheep
Species Excretion, ymol/W7/d Nutrient supply Reference

P! allantoin
Caprine - 46-152 Conventionally fed Laurent and Vignon (1983)
Caprine 217 150 Milk fed pre-ruminants Lindberg (1989)
Caprine 253 161 Milk fed pre-ruminants Lindberg (1991}
Ovine - 46 Conventionally (ed Laurent and Vignon {1983}
Ovine - 140 Conventionally fed Puchala and Kulasek (1992)
Ovine - 156 Miik fed pre-ruminants Antonicwicz (1983)
Ovine - 22-44 [ntra-gastric infusion Antoniewicz and Pisulewski (1982)
Ovine - 161 Intra-gastric infusion Sibanda et al. (1982)
Ovine 202 176 [ntra-gastric infusion Giesecke et al. (1984)
Ovine 165 - Intra-gastric infusion Fujihara et al. (1987)
Ovine 136-217 68-109 Intra-gastric infusion Lindberg and Jacobssen {1990)
Ovine 168 93 [ntra-gastric infusion Chen et al. (1990c)
Ovine 176 Intra-gastric infusion Chen et al. (1997)
Ovine 191 73 Purine-free nutrient supply Baleclls et al. (1991}

! refers to purine derivatives calculated as the sum of allantoin, hypoxanthine, uric acid and xanthine

T ATIIIONIHS

g6l



194 PURINE AS MICROBIAL PROTEIN INDICE

(Fujihara et al., 1987; Chen et al., 1990c; Lindberg and Jacobsson, 1990) and ener-
gy supply (Lindberg and Jacobsson, 1990). In contrast, Sibanda et al. (1982) re-
ported that endogenous allantoin excretion in cattle was affected by energy and N
supply, the extent of which was greatest when no nutrients were infused. Giesecke
et al. (1984) also noted that endogenous allantoin excretion was higher in sheep
receiving volatile fatty acid infusions that supplied 0.25 of maintenance energy
requirements, findings that are consistent with increases in endogenous altlantoin
excretion of milk-fed goats during pertods of restricted energy and N intake (Lind-
berg, 1989). Such apparent discrepancies concerning the influence of nutrient sup-
ply may potentially be reconciled as a result of differences in metabolic state,
since changes in endogenous allantoin cxcretion appear to be positively and more
closely related with changes in cumulative N balance than daily N intake or reten-
tion (Chen et al., 1992b). More recently, Shingfield and Offer (1999b) reported
that urinary losses of pseudoundine, a modified pyrimidine metabolite that is libe-
rated during tissue RNA turnover and obligately excreted in the urine, arc posi-
tively related to cnergy mntake in dairy cows. These findings suggest that tissue
NA turnover is associated with the metabolic activity of an animal, and therefore
variations in cndogenous purine losses need to be taken into account if accurate
predictions of MP supply are to be made from measurements of urinary PD excre-
tion in cattle and in sheep fed at sub-mamtenance.

PREDICTION OF MICROBIAL PROTEIN BASED ON PURINE METABOLITES
Renal excretion

Following the obscrvations that purines entering the small intestinc of rumi-
nants arc essentially microbial in origin, and that once purine salvage pathways
are saturated, absorbed exogenous purines are quantitatively recovered m urine, a
number of mathematical modcls have been proposed for the prediction of MP
supply based on urinary PD excretion (Ry$ et al., 1975; Chen ct al., 1990a; Verbi¢
et al., 1990; Balcells et al., 1991, Puchala and Kulasek, 1992). Despite considera-
ble indirect evidence to support this approach, few studies have been conducted to
validate the PD technique. Djouvinov and Todorov (1994) demonstrated on the
basis of two experiments that mean treatment (n=6) estimates of microbial N sup-
ply predicted from urinary PD excretion according to Chen ct al. (1990a) werc
closely correlated with values based on DAPA and purines (r values 0.982 and
0.995. respectively). Further studies in sheep have also demonstrated close rela-
tionships between urinary PD and allantoin excretion with cstimates of rumen
microbial synthesis based on '*N and purines (Pérez et al., 1996a, 1997). However,
predictions of MP supply based on urinary PD (Chen et al., 1990a} or allantoin
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(Balcells et al., 1991) excretion were consistently lower than direct measurements
based on "N or purines (Figure 5). Use of mean treatment values from both studies
(n=16) indicates that relative to "N based measurements, predictions based on
urinary PD or allantoin excretion and measured purine:N ratios in rumen bacteria
lead to a mean underestimation of MP supply of proportionately 0.16 and 0.25,
respectively. These findings tentatively suggest that response models used to pre-
dict MP supply in sheep underestimate the extent of non-renal PI) excretion.

Data supporting the use of urinary PD cxcretion to estimate MP supply in dairy
cows is less convincing than that reported in sheep. Johnson et al. (1998) on the
basis of six studies reported weak and highly variable relationships between uri-
nary PD excretion and estimates of microbial protein supply using purines as a
microbial marker. Furthermore, excretion of uric acid was found to be more close-
ly correlated with MP supply than that of allantoin, which is surprising because
allantoin is quantitatively the most important PD excreted in urine. However, lack
of relationships reported in these studies could potentially be cxplained by the
exclusive use of LAB isolates, unreliable estimates of digesta flow due to the use
of a single marker system and random experimental errors associated with the
determination of purines and PDs using aspecific colorimetric based methods. In
contrast, more recent data (Ahvenjirvi et al., unpublished) has shown that MP
supply predicted from urinary PD excretion according to Verbic et al. (1990) to be
moderately corrclated with values based on purines (Figure 6) and indicated a
positive bias in this relationship that tentatively suggests that endogenous purine
losses (385 pmol/W®"/d) are underestimated in the response model proposed by
Verbié et al. (1990).

Mammary allantoin secretion

Milk is easily sampled and routinely collected as part of national recording
schemes, and therefore the secretion of PDs in milk could potentially be used as
the basis for an on-farm diagnostic of MP supply. For this purpose it appears that
only measurements of allantoin secretion would be of value, since uric acid is alsq
derived from endogenous purinc metabolism in the mammary gland (Rosskopf ct
al., 1991; Giesecke ct al., 1994). Furthermore, a lack of uricase or uricase mRNA
activity in mammary tissue (Motojima and Goto, 1990} tends to suggest that uric
acid derived from endogenous sources is not subsequently oxidized to allantoin.

Several studies have shown that milk allantoin secretion is related to the intake
of dietary crude protein (Kirchgessner and Kreuzer, 1985}, OM (Gonda and Lind-
berg, 1997) and energy (Rosskopf et al., 1991; Lebzien et al,, 1993, Giesecke et
al., 1994), Furthermore, concentrations of allantoin in milk and plasma have been
shown to be closely correlated (Rosskopf et al., 1991; Giesecke et al., 1994). De-
spite such promising indircet evidence, critical evaluation of milk allantoin secre-
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Figure 5. Comparison of micrebtal nitrogen flows (g/d) in sheep based on "N purines and with

estimates predicted from urinary purine derivative and allantoin excretion according to the response

models of Chen et al. (1990a) and Balccelis et al, (1991), respectively

a) Comparison of microbial nitrogen flows {g/d) based on N and urinary purine derivative (Q) and
allantoin excretion (@)

Data derived from Pérez ct al, {1996a, 1997). Dotted line indicates y = x

b) Comparison of microbial nitrogen flows {g/d) based on purines and urinary purine derivative ()
and allantoin excretion (@).

Data derived from Pérez ct al. {1996a, 1997). Dotted line indicates y = x
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Figure 6. Comparison of microbial nitrogen flows (g/d) in dairy cows based on purines and estimates
predicted from urinary purine derivative excretion according to the response model of Verbi¢ et al.
(1990)

Data derived from Ahvenjérvi et al. (unpublished).

Fitted line indicates correlation between microbial nitrogen flow predicted based on urinary PD
excretion (Y) and purines (x) where:

Y =443 (s.e. 53.0) +1.00(s.e. 0.31)x (n=15,r=0.663, P<0.01)

tion as an indicator of MP supply is limited. Several studies have attempted to
assess the value of milk allantoin measurements based on examination of the rela-
tionship between mammary and renal allantoin excretion. Martin-Orte et al. (1996)
reported that milk allantoin secretion in sheep was not significantly correlated
with urinary allantoin or PD excretion. Gonda and Lindberg (1997) working with
dairy cows, were also unable to identify a consistent relationship between urinary
and milk allantoin excretion. Shingfield and Offer (1998b) attempted to evaluate
the potential of milk allantoin in two experiments using diets formulated to supply
different amounts of metabolisable and fermentable energy, that were assumed to
cause differences in MP supply. Excretion and concentration of allantoin in milk
was found to be closely correlated with urinary PD excretion, based on mean
treatment values, but not when based on individual cow measurements (Figure 7),
a finding attributed to mutual correlation of these parameters with milk yield. Since
the prediction of urinary PD excretion was not improved by milk allantoin
measurements, compared to that of milk yield alone, Shingfield and Offer (1998b)
concluded that the secretion of allantoin appears to be of little value for the
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Figure 7. Relationship between mammary and urinary allantoin excretion in dairy cows.
Data derived from Shingfield and Offer (1998b).

Fitted line indicates correlation between mammary (Y, mmol/d) and urinary allantoin
(x, mmol/d) excretion where:

Y = 0.83 (s.e. 0.31) + 0.0085 (s.e. 0.0012) x (n =94; r = 0.594, P < 0.001)

assessment of MP supply. These findings are consistent with those of Lebzien et
al. (1993) indicating that estimates of MP supply based on "N were less well
correlated with milk allantoin excretion (r value 0.711; Figure 8) than dietary ener-
gy intake (r value 0.916).

APPLICATION

Despite being non-invasive, the widescale use of urinary PD excretion to pre-
dict MP supply in ruminant animals is constrained by the requirement for a total
urine collection. Since urinary creatinine excretion has been considered as an in-
ternal marker of urinary output (De Groot and Aafjes, 1960; Erb et al., 1977),
Antoniewicz et al. (1981) suggested that the molar ratio of PDs to creatinine
(PD/c) in spot urine samples could be used to overcome these restrictions. Use of
this approach is valid provided that renal clearances of PDs approach that of creati-
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Figure 8. Relationship between mammary allantoin secretion and '*N based estimates of microbial
nitrogen supply.

Data derived from Lebzien et al. (1993).

Fitted line indicates correlation between mammary allantoin secretion (Y, mmol/d) and duodenal
microbial nitrogen supply (x, g/d) where:

Y =-0.294 (s.e. 0.800) + 0.014 (0.003) x (n=30,r=0.711, P <0.001)

nine, diurnal variations in spot sample PD/c ratios are small or at least consistent
and PD/c ratios are closely correlated with daily PD excretion (Chen et al., 1995).

A number of studies in ruminant species (Antoniewicz et al., 1981; Chenetal.,
1992¢; Gonda and Lindberg, 1994; Dewhurst et al., 1996; Vagnoni and Broderick,
1997, Valadares et al., 1999) have reported that spot sample PD/c ratios are little
affected by diurnal variation and closely correlated with urinary PD excretion (Chen
etal., 1995; Dapoza et al., 1999). In contrast, Puchala and Kulasek (1992) demon-
strated the dependence of spot sample PD/c ratios on sampling time. A recent
critical evaluation of the spot sampling technique indicated that within-day varia-
tions in urinary PD/c ratios of two-hourly spot samples followed diurnal patterns,
the extent of which was dependent on feeding grass silage and concentrate either
separately or as a complete diet (Shingfield and Offer, 1998a; Figure 9). Since
variations in PD/c ratios were influenced by feeding system, it appears that estab-
lishing a valid sampling protocol which would be accurate for a range of diets and
feeding systems, represents the largest constraint on the use of technique. Further-
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more, prediction of urinary PD excretion based on daily mean PD/c ratios has
been shown to be subject to errors due to between-animal (Daniels et al., 1994,
Shingfield and Offer, 1998a; Dapoza et al., 1999) and in some cases between-
treatment (Faichney et al., 1995) variations in urinary creatinine excretion. How-
ever, despite these concerns, use of the spot sampling technique does represent
the only currently available approach with potential as the basis of an on-farm
diagnostic of MP supply.

220

1.90 |

Purine derivative/creatinine ratio

1.00 I 1 L 1 1 1 1 1 1 1
2 4 6 8 16 12 - 14 16 18 20227 24

Time, h

Figure 9. Diurnal variation in the molar ratio of purine derivatives to creatinine in dairy cows offered
grass silage and a concentrate supplement either separately (—®-—) or as a complete diet (—QO—).
Data derived from Shingfield and Offer (1998a). Dotted lines indicate daily mean purine derivative
to creatinine ratios for separate (- - - -) and complete diet feeding (- — -), respectively. Each point is
the mean of 24 observations with s.e. for treatment-sampling time interactions

CONCLUSIONS

Data reported in the literature has provided both direct and indirect evidence
that support the validity of the assumptions of the PD technique. Estimates of
rumen microbial synthesis based on urinary PD excretion are, in general, consis-
tent with values derived using standard in vivo procedures. Difficulties in obtai-
ning representative samples of rumen microbes and uncertainities concerning
variations in non-renal excretion and endogenous purine losses, lead to the general
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conclusion that use of the PD technique is confined to the assessment of relative
differences rather than absolute estimates of MP supply. Consequently, cstimates
based on this approach do not appear to be sufficiently reliable to be considered as
reference measurements for the future development of prediction models within
modern metabolisable protein evaluation systems. However, despite concerns of
establishing a valid sampling protocol and therefore providing an accurate predic-
tiont of urinary PD excretion, use of the spot samphng technique does appear to
have sufficient potential as an on-farm diagnostic of MP supply. In contrast, mam-
mary PD secretion, whilst being extremely attractive duc to the case of sampling
appears to be of little value for the assessment of MP supply duc a mutual correla-
tion with milk yield.
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STRESZCZENIE

Okreslenie podazy bialka drobnoustrojéw u zwierzat przezuwajacych na podstawie wydalania
metabolitow purynowych przez nerki i gruczot mlekowy. Referat przegladowy

Omoéwiono znaczenie wydalania metabelitow purynowych przez nerki i gruczot mlekowy jako
techniki do szacowania podazy biatka pechodzenia mikrobiologicznego u przezuwaczy. Dane poda-
wane w litcraturze zmierzajy do podtrzymania stusznoscet zalozen, ze puryny przechodzace do dwu-
nastnicy sa zasadniczo pochodzenia mikrobiologicznego i ze w nastgpstwie przemian, produkty prze-
miany puryn (tacznic allantoina, hypoksantyna, kwas moczowy i ksantyna) sa ilosciowo odzyskiwa-
ne w moczu. Wigkszosc przekonywujacych danych doswiadczalnych sugeruje, ze sekrecja metaboli-
téw puryn w mlcku ma matle znaczenie przy szacowaniu podazy biatka pochodzenia mikrobiologicz-
nego 7 powadu tstnienia wzajemnej zaleznosci z wydajnoscig mieka. W przeciwienstwie do tego,
przyjecie produktow przemiany puryn wydalanych z moczem wydaje sig stanowi¢ wskazniki podazy
biatka drobnoustrojowego ogolnie zgodne z wartodciami otrzymanymi przy zastosowaniu standar-
dowych metod postgpowania in vive. Dokladno$é tych metod zalezy jednak w duzym stopnin od
ofrzymania reprezentatywnych prob drobnoustrojow zwacza i mozliwosci oceny zmiennosc: w wy-
dalaniu innymi — niz przez nerki - drogami i endogennych strat puryn. Podsumowujac, wydalanic
produktéw przemiany puryn w moczu moze by¢ wiarygodna nieinwazyjng metoda oszacowania tyl-
ko wzglednych réznic, raczej niz tloSciowego oznaczania podazy biatka pochodzenia mikrobiolo-
gicznego U zwicrzat przezuwajacych.



