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Challenges to improving 
sustainability during production  
of food of animal origin 

There are currently many ways to overcome 
food deficiency and to produce food in more sus-
tainable ways. More efficient animal nutrition, feed 
that is non-competitive with human nutrition (e.g., 
grassland, co-products of agriculture, food and bio-
fuel industries (Makkar, 2012) or other biomasses), 
reduction of loss and waste in agriculture, food pro-
cessing, trade and households, as well as in plant 
and animal breeding are the most promising (Nie-
mann et al., 2011; Flachowsky et al., 2015). Other 
options, like the use of insects as food (EFSA, 2015) 
or other alternative foods, or changes in eating pat-
terns are under discussion. More details are given in 
the following sections.

 

Plant breeding 
Plant breeding can be considered the starting 

point of the food chain (Part 1; Figure 2) for sus-
tainable plant (feed) production (SCAR, 2008; The 
Royal Society, 2009; Flachowsky et al., 2013a). It 
has a large and strategic potential for global feed 
and food security. 

Developing high-yield, stable and highly digesti-
ble crops with low external inputs of non-renewable 
resources, such as water, fuel, arable land, fertili-
zers, etc., low emissions of gases with greenhouse 
potential during cultivation, high resistance against 
biotic and abiotic stressors, including adaptation to 
potential climate change (Reynolds, 2010; New-
man et al., 2011; Fischer et al., 2014) and low con-
centrations of undesirable substances in the plants, 
are important challenges for plant breeders. Plants 
with these properties would allow more sustainable 
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production in the future and would be important 
in human and animal nutrition. Such an ideal crop 
(Pennisi, 2010) may contribute to sustainable plant 
production. Additional aspects for plant breeders 
from the viewpoint of animal nutrition are:
• consideration of forages and grassland
• biofortification of plants is not so important  

because many feed additives is available
• the feed value of co-products after processing 

‘new’ plants for food and biofuel
• recommended animal feeding studies with tar-

get animal species to evaluate the nutritional ef-
fects and safety of the changes induced in the 
plants (Flachowsky, 2013; Van Eenennaam and 
Young, 2014)

• cooperation between plant breeders and animal 
nutritionists in the early stages of breeding pro-
grammes.
Traditional breeding, as well as ‘green’ biotech-

nology (‘green’ chemistry, genetic engineering; Guil-
lou and Matheron, 2014) can contribute to fulfilling 
the objectives mentioned above. Genetically modi-
fied plants may achieve these objectives faster and 
with greater precision (Tester and Langridge, 2010; 
Flachowsky, 2013), but are under critical public dis-
cussion presently. More activities and more public-
supported research in these fields are necessary for 
sustainable utilization of natural limited resources 
and for improved use of unlimited resources such 
as sun energy/light, CO2 and N2 from the air, or the 
global gene pool. All methods of plant breeding that 
contribute to more resource-efficient production of 
high and stable yields of available biomass should be 
used. Ruane et al. (2013) and Andersen et al. (2015) 
analysed new breeding techniques for organic farm-
ing and came to the conclusion that the most efficient 
methods are based on modern biotechnology tech-
niques, which have yet to be embraced by the organic 
farm movement. In addition, the potential use of new 
breeding technologies in organic farming is limited 
in the EU, where the current regulatory framework is 
process based and would classify products produced 
using new technologies as genetically modified or-
ganisms (GMO). The question arises whether the 
adoption of biotechnological methods is feasible not 
only from the perspective of sustainability, but also 
from conceptual, socio-economic, ethical and regula-
tory perspectives.

Animal breeding 
An important contribution to meet the increa-

sing needs for food of animal origin and mitigat-
ing undesired effects in animal husbandry is to en-
hance the efficiency of animal growth, reproduction,  

lactation and laying performance (Wu et al., 2014a). 
The breeding of domestic animals has a long-
standing and successful history, starting with do-
mestication several thousand years ago, when man 
kept animals in his proximity and used products 
thereof. Using the technical options that were avail-
able in each time period, humans have propagated 
those populations that deemed useful for their re-
spective needs and purposes. Selection mostly oc-
curred according to desirable traits. Scientifically 
based animal breeding has only existed for about  
50 years, supported mainly by population genetics 
and statistics. 

Modern animal breeding programmes include 
biotechnological procedures, of which artificial in-
semination (AI) is the most prominent. Presently, AI 
is employed in more than 90% of all sexually mature 
female dairy cattle in countries with advanced breed-
ing programmes. Strategies to breed animals that 
more efficiently process feed into animal-derived 
food and concomitantly decrease emission per pro-
duct unit may contribute to more sustainable live-
stock production (Thornton, 2010; Niemann et al., 
2011). The objectives of these strategies comprise:
• higher feed intake of animals (NRC, 1987; 

Forbes, 1995) to improve the ratio between en-
ergy/nutrient requirements for maintenance and 
animal yields (Part 1; Table 5)

• higher digestibility of feed (Tillie  et al., 2013) 
to make energy and nutrients more available 
from the same amount of feed 

• using the advantages of ruminants (Hungate, 
1966; van Soest, 1994; Hobson and Stewart, 
1997) and reduction of energy losses from 
the digestive tract, e.g., CH4 (Baldwin, 1995;  
Kebreab et al., 2006)

• higher absorption of the digested nutrients
• lower energy and nutrient requirements for 

maintenance of the animals
• lower energy needed for protein synthesis in the 

body
• stimulation of anabolic processes and decreasing 

catabolic processes in the animal
• lower fat content in animal bodies, lower excre-

tion of fat in milk and eggs and of lactose in 
milk (lower energy content in products)

• improved animal health, specifically higher  
resistance against biotic and/or abiotic stressors 
and lower losses may contribute to longevity 
(e.g., of dairy cows) and more efficient conver-
sion of feed.
In summary, the strategies discussed above show 

that breeding strategies may contribute to lower en-
ergy requirements of animals and to more efficient 



G. Flachowsky, U. Meyer 285

feed conversion. In the future, existing and emerg-
ing breeding technologies could be instrumental 
in producing livestock with much greater feed ef-
ficiency and in improving the sustainability of ani-
mal husbandry. Ruane et al. (2013) analysed 12 case 
studies of application of biotechnology in livestock 
and aquaculture and concluded that these techniques 
have great potential for improving on-farm produc-
tivity and living conditions of farmers.

Contributions of animal nutrition
Progress in feed science, nutritional physiology 

and animal feeding are important key elements for 
more efficient conversion of feed in food of ani-
mal origin and lower emissions per animal product  
(Flachowsky et al., 2013a; Makkar and Ankers, 
2014). There are some strategies that contribute to 
this objective, such as:
• production, conservation and preparation of 

high quality feeds
• higher feed intake of animals to improve the 

ratio between energy/nutrient requirements for 
maintenance and animal yields (e.g., Niemann 
et al., 2011)

• better knowledge about animal requirements in 
essential nutrients (e.g., amino acids, minerals, 
vitamins) and supplementation of feed with 
adequate nutrients and some non-essential feed 
additives

• meeting the protein and amino acid require-
ments more precisely by ration calculation on 
the basis of adequate animal requirements (e.g., 
precaecal amino acids; GfE, 2008, 2014) and 
supplementation with amino acids

• supplementation with feed additives for better 
digestion and utilization of feeds or special nu-
trients in feed (availability of P from phytate-P 
with the enzyme phytase).
These and further measurements contribute to 

more efficient conversion of feed. For example, feed 
use per kilogram of egg mass decreased in Europe 
from 3.1 (1968) to below 2 kg (EU, 2008) or the 
phosphorus excretion of fattening pigs (35–115 kg 
body weight) decreased from 625 (without phytase) 
to 350 g per animal with phytase supplementation 
(GfE, 2008). Wu et al. (2014a) analysed pork pro-
duction in the United States between 1959 and 2009 
and found improvement in the feed:gain ratio from 
6.6 to 4.4 kg·kg–1 of dressed carcass, a decrease in 
the CF from 8.4 to 5.5 kg per kilogram dressed car-
cass and in the efficiency of land use from 365 to 
1672 kg of dressed carcass per hectare. Feed effi-
ciency can be considered a key driver of productiv-
ity, resource use and greenhouse gas (GHG) emis-
sions (Herrero et al., 2013).

In relation to nutrient requirements and further 
improvement of feed efficiency, the NRC (2015) 
concluded that ‘research should continue to develop 
a better understanding of nutrient metabolism and 
utilization in the animals and the effects of those nu-
trients on gene expression. A systems-based holistic 
approach needs to be utilized that involves ingredi-
ent preparation, understanding of ingredient diges-
tion, nutrient metabolism and utilization through the 
body, hormonal controls and regulators of nutrient 
utilization. Of particular importance is basic and 
applied research in keeping knowledge of nutrient 
requirements of animals current.’ 

Use of feeds that do not compete with 
human nutrition 

Some feeds such as grassland, co-products from 
agriculture, the food and biofuel industries, etc., do 
not compete with human nutrition. Therefore, they do 
not compete with arable land and further limited re-
sources and have a large potential for animal nutrition.

Ruminants are generally independent from grains 
or concentrates because their rumen microbial pop-
ulation is capable of digesting plant fibre. They are 
able to produce edible protein as milk and meat 
from permanent meadows and pastures. Their ad-
vantages compared with non-ruminants are very of-
ten described (e.g., Hungate, 1966; van Soest, 1994) 
and will not be further discussed here. Pastoral sys-
tems may contribute to meeting human demand for 
food of animal origin, and are more efficient in pro-
ducing food per unit of area of dryland than other 
forms of agricultural land used under such condi-
tions (HLPE, 2012). Pastoralist are also efficient us-
ers of resources like manure (Powell et al., 2013). 
Because of the predominantly high fibre content of 
roughage from grassland and low animal yields, the 
methane emissions and carbon footprints (CFs) per 
kilogram edible protein may be higher under such 
extensive conditions (FAO, 2010; Gill et al., 2010); 
GHG mitigation measurements are, therefore, im-
portant (Hristov et al., 2013a,b; Opio et al., 2013).

Besides roughages and concentrates, not only    
co-products from agriculture, such as cereal straw, 
but also from food production and the biofuel in-
dustry are commonly used in animal feeding. Co-
products are by-products of main processes such as 
grain production (e.g., straw, stalks, husks), process-
ing of raw products in the food industry (e.g., ex-
tracted oil meals from the oil industry, bran from ce-
real processing, beet pulp or bagasse from the sugar  
industry, animal co-products from milk, fish, or meat 
processing) or from the biofuel industry (e.g., dried 
distillers grains’ with solubles called DDGS; cakes 
and meals from rape and other oil seeds). According 
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to FAO (2010), between 10 and 50% of concentrate 
comes from co-products in various global regions. 
In some countries, up to 100% of concentrate may 
be based on co-products. Co-products are mostly in-
edible to humans and otherwise would be wasted or 
used for energy production. They are used in vari-
ous amounts and proportions in animal diets. Cereal 
straws and other co-products rich in plant cell walls 
are poorly digestible and thus are poor energy and 
protein sources. They are fed to ruminants with low 
animal performance or to meet their maintenance 
requirements. In the nutrition of yielding ruminants 
they can be considered only as a source of fibre. 
They are not used in the feeding of non-ruminants.

Co-products from the food and fuel industries 
usually contain more nutrients not removed by pro-
cessing than raw materials (e.g., protein in the case 
of DDGS). They can be used as valuable sources of 
protein, minerals and other nutrients, depending on 
the raw material and chemical or physical proces-
sing without any land footprint. In the future, more 
cereal grains will be used for food and fuel and more 
co-products will be available for animal nutrition. 
More details about the nutritive value and utilization 
of co-products from the biofuel industry in animal 
nutrition were recently compiled by Makkar (2012). 
Also some other biomasses such as algae, seaweed, 
duckweed, leaves and twigs of trees and shrubs, etc., 
do not compete with human nutrition and are used 
as animal feed (van der Spiegel et al., 2013). 

The NRC (2015) concluded that ‘research 
should continue to identify alternative feed ingre-
dients that are inedible to humans and will notably 
reduce the cost of animal protein production while 
improving the environmental footprint. These in-
vestigations should include assessment of the pos-
sible impact of changes in the protein product on the 
health of the animal and the eventual human con-
sumer, as well the environment.’

Potential of insects and other protein 
sources 

Apart from developments in plant and animal 
breeding and nutrition, the utility of insects (e.g., 
Makkar et al., 2014; Morales-Ramos et al., 2014), 
molluscs, snails and microbial biomasses (Anupama 
and Ravindra, 2000; Zepka et al., 2010) are being 
studied as alternatives in order to stabilize and im-
prove human and animal nutrition. 

Presently, insects as feed and food are consid-
ered a ‘hot topic’ in Europe. Some European coun-
tries (e.g., Belgium, France, Iceland, the Nether-
lands) have performed risk assessments related to 
insects as food and feed. In May 2014, Wagenin-

gen University (the Netherlands) organized in col-
laboration with the Food and Agricultural Organiza-
tion of the United Nations (FAO) an international 
conference entitled Insects to Feed the World. The 
European Food Safety Authority (EFSA) submitted  
a Scientific Opinion on the ‘Risk Profile Related to 
Production and Consumption of Insects as Food and 
Feed’ (EFSA, 2015) and the Wageningen Academ-
ic Publishers started in 2015 to publish a scientific 
journal entitled Journal of Insects as Food and Feed.

More than 1900 insect species in various deve-
lopment stages (van Huis, 2013) are eaten by humans 
worldwide. The most commonly eaten insect groups 
are from the orders: Coleoptera (beetles), Lepidop-
tera (caterpillars of butterflies and moths), Hymenop-
tera (bees, wasps, ants), Orthoptera (grass - hoppers, 
locusts, crickets, termites), Hemiptera (cicadas, leaf 
and plant hoppers, true bugs, scale insects), Odonata 
(dragonflies) and Diptera (flies) (EFSA, 2015). 

Because of the large variety of insects consu-
med, it is difficult to give a representative review of 
their nutritional composition. There are, however, 
some papers that summarize compositional data 
(Table 8). The chemical composition depends on 
the species and developmental stage (eggs, larvae, 
pupa, adults) and the diet fed to insects. Handling, 
preparing and processing of insects may also influ-
ence their composition and nutritive value (van Huis, 
2013; Makkar et al., 2014; EFSA, 2015). In insects 
prepared for human consumption, wings, legs and 
gastrointestinal contents are often removed, possibly 
also due to different analytical approaches. Because 
the nutritional composition of insects is difficult to 
establish, only some general statements can be made. 
Table 8 shows the range of proximate compositions 
of insects according to different authors. Tryptophan, 
lysine and histidine are considered the most frequent 
limiting amino acids in insect proteins (Finke, 2004; 
Sanchez-Muros et al., 2014).

Notwithstanding tradition and ethical reasons, 
more research on the nutritive value and on the 
microbiological and chemical hazards of insects, 
insect products and other ‘new’ feeds and foods is 
necessary. Safety research should be also intensified 
when insects are growing on bio-wastes, including 
manure or in regions with undesirable substances in 
the food chain (EFSA, 2015). 

Alternatives to protein of animal origin 
Foods of plant origin with a high protein concen-

tration such as grain-based products, legumes and 
nuts can replace animal protein in the human diet. 
The protein concentration varies among the different 
plant sources from approximately 10 to 30% (EFSA, 
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2012; Day, 2013). There are some alternatives to pro-
tein of animal origin and initiatives have been taken 
to replace it in other ways and by producing similar 
products (e.g., soya milk, tofu, rice milk). Such food 
is usually produced from valuable protein sources of 
plant origin (e.g., soyabean, wheat, rice, maize, bar-
ley, pea, sorghum, lupine and chickpea). Developers 
try to create new meat and milk analogue products 
by combining proteins from various plant sources  
(Aiking, 2011; Day, 2013).

Cultured muscle cells (Dodson et al., 1997; Post, 
2014) from bovine skeletal muscle stem cells pro-
duced beef with the same nutritional value as live-
stock and can also be an alternative to ‘traditional’ 
protein of animal origin. Protein synthesis by cultured 
skeletal muscle cells should be very efficient. Further 
studies including psychological obstacles concerning 
public acceptance are necessary for optimization of 
the protein and fat content of cultured beef. Research 
in this field is a great challenge for the future.

Reducing food losses and changing eating 
patterns

The issue of global food losses and wastes has 
recently received much attention. According to FAO 
(2013b), about one-third of food produced for hu-
man consumption – about 1.3 billion tones of ed-
ible food – is lost or wasted globally per year. This 
amount is the equivalent of about 24% of all the 
calories currently produced for human consumption 
(Lipinski et al., 2013). In developing countries, food 
waste and losses occur mainly in the early stages of 
the food chain; in medium- or high-income coun-
tries, food is wasted or lost mainly in later stages 
of the food chain (FAO, 2011). Reduction of these 
losses is essential for improving food security,  
sustainability of food production and for reducing 
the environmental footprint of food systems.

Recently HLPE (2014) analysed and summa-
rized the reasons for food losses from the field to the 
consumer and gave the following recommendations 
to reduce these losses:
• improvement of data collection and sharing 

knowledge on food losses and waste 
• development of effective strategies to reduce 

food losses and waste, at the appropriate levels
• implementation of effective steps to reduce food 

losses and waste
• better coordination of policies and strategies in 

order to reduce food losses and waste.
More details about reducing food losses and 

waste can be found in some recent papers and re-
views (Parfitt et al., 2010; FAO, 2011; Lipinski  
et al., 2013; Blanke, 2015).

Human eating patterns may also influence the 
sustainability of agriculture and animal husbandry. 
Higher demand for food of animal origin as a re-
sult of growing incomes (Keyzer et al., 2005; Kast-
ner et al., 2012) requires higher plant yields and/
or more area for feed production (Gerbens-Leenes 
and Nonhebel, 2002; Wirsenius et al., 2010), as well 
as more animals and/or higher animal yields and 
an increase in agricultural trade. Therefore, some 
authors propose a redefinition of agricultural yield 
and agriculture: ‘from tons to people nourished per 
hectare’ (Kastner et al., 2012; Cassidy et al., 2013) 
and ask for more sustainable animal agriculture 
(Kebreab, 2013; SAFA, 2013). On the other hand, 
changing eating patterns (Guyomard et al., 2012) 
and eating less or no livestock products, especially 
meat, are often seen as possible solutions to reduc-
ing the environmental impact of animal agriculture 
(Pimentel and Pimentel, 2003; Baroni et al., 2007) 
and per capita land requirements (Peters et al., 2007;  
Flachowsky et al., 2015) and should contribute to 
more sustainable animal production.

Table 8. Examples of different insect species proximate body composition ranges by various authors (crude nutrients by Weender analysis;  
in % of dry matter) 

Authors No of samples, species Crude protein
(N x 6.25)

Crude fat  
(ether extract)

Carbohydrates 
(NFE1, fibre, NDF2)

Crude  
ash

Rumpold and Schlüter, 2013 234   4.9 – 74.8   0.7 – 67.2   3.0 – 86.3   0.6 – 26.0
Sanchez-Muros et al., 2014   72   9.5 – 70.1   1.5 – 56.1   1.8 – 77.7   0.6 – 26.0
Makkar et al., 2014 Black soldier fly larvae 

Housefly maggot meal 
Tenebrio molitor 
Locust or grasshopper meal 
House cricket 
Silkworm pupae meal 

41.1 – 43.6
42.3 – 60.4
47.2 – 60.3
29.2 – 65.9
55.0 – 67.2
51.6 – 70.6

15.0 – 34.8
  9.0 – 26.0
31.1 – 43.1
  4.2 – 14.1
  9.8 – 22.4
  6.2 – 37.1

  7.0
  1.6 – 8.6
  7.4 – 15.0
  2.4 – 14.0
15.7 – 22.1
  2.5 – 5.8

14.6 – 26.8
  6.2 – 17.3
  1.0 – 4.5
  4.4 – 10.0
  3.6 – 9.1
  3.3 – 10.6

1  NFE –  N-free extractives, 2 NDF –  neutral detergent fibre
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Reduction of emissions
As already mentioned (Part 1), methane (CH4) 

is the most important GHG associated with ani-
mal husbandry coming directly from animals (e.g., 
Hristov et al., 2013a), from excrement management 
(Hristov et al., 2013b; Montes et al., 2013), or from 
land use changes (Rounsevell et al., 2012; Havlik et 
al., 2013). Carbon dioxide (CO2) from animal me-
tabolisms will be recycled by plant growth (Part 1, 
Figure 2) and nitrous oxide (laughing gas, N2O) is 
not directly excreted by animals (see Part 1). There-
fore, the possibilities of reducing methane emissions 
(Part 1, Methane (CH4)) will be discussed below.

Some possibilities for reducing methane emission 
in ruminants, such as increasing forage digestibil-
ity and digestible forage intake, dietary lipids, higher 
dietary concentrate proportions, or the application 
of various feed additives are shown in Table 9 and 
are mentioned by some authors (e.g., Blaxter and 
Czerkawski, 1966; Beauchemin et al., 2009). Poten-
tial reduction strategies have been grouped in three 
complexes in Table 9:
•   effects of feeds/feeding/ration composition
•   ration supplementation with feed additives
•   selection of ruminant species.

GHG emissions can be reduced by increa-
sing animal productivity and feed efficiency using 
metabolic modifiers, such as growth hormones and 
ionophoric antibiotics, but the applicability of these 
mitigation practices is limited to regions where 
their use is permitted. Ranga Niroshan Appuhamy 
et al. (2013) have analysed the data from 22 con-
trolled feeding studies on the potential of methane 
reduction by the ionophoric substance, monensin.  

Its mitigation effects were small (12 or 14 g·d–1 in 
dairy cows and beef cattle) when adjusted for dose.

Hydrogen acceptors, such as fumaric acid, acry-
lic acid and other substances may also contribute to 
H2-binding in the rumen, but the in vivo effects are 
small and inconsistent (Bayaru et al., 2001; Remling 
et al., 2014).

Many studies have been done with substances 
of plant origin such as tannins, non-tannins, phenols, 
saponins, essential oils, and whole plants or parts 
of plants. The development of new feed additives, 
mainly based on plant extracts, to decrease methane 
production within the rumen has attracted much re-
search over the last 20 years. The results remain vari-
able and contradictory, as summarized by Benchaar 
and Greathead (2011). The effects of plants or plant 
extracts having a high content of saponins, flavonoids 
and tannins varied depending upon the source, type 
and level of secondary metabolites present in the 
plant material. These may limit the demand and use of 
such substances in the animal feed market for reasons 
related to several factors, including the lack of persis-
tency of the effects when they are tested in vivo due 
to the adaptation of the microbial ecosystem, the vari-
ability of concentration of active compounds in plant 
extracts, the stability of the active substance within 
the rumen, and possible side effects that compromise 
overall rumen fermentation (Hart et al., 2008).

Most of the substances were tested in in vitro 
studies and they may have a potential to reduce 
methane emissions from ruminants, although their 
long-term effects have not been well established and 
some are toxic or may not be economically feasible. 
Impressive results of in vitro studies were mostly 

Table 9. Feed measurements to reduce enteric methane emission, importance on farm level and research need in ruminants

Measurements Significance (esp. for Europe) 
on farm level

Research 
need

Feeds and feeding
•  more concentrate, less fibre in diet Limited, because of high concentrate amounts already  

in many diets
~

•  forages with high digestibility, low fibre content Consideration in plant breeding and practical feeding ⇑

•  fats and fatty acids in diets Limited, because of some side effects in the rumen ⇑

Application of feed additives
•  halogen compounds (e.g., chloral hydrates) Banned in the EU ~
•  Ionophores (e.g., monensin) Banned in the EU ⇑

•  addition of hydrogen acceptors, such as fumaric acid, acrylic acid, etc. Presently no significance ⇑

•  addition of phytogenic substances (essential oils; plant extracts  
    or plants containing such substances, e.g., garlic); tannins; saponines

Presently no significance ⇑ ⇑

•  addition of 3-nitrooxypropanol and other nitrooxy carboxylic acids Presently no significance ⇑ ⇑
•  further additives, such as yeasts, enzymes, etc. Presently no significance ⇑

Selection of ruminant species with low CH4 emission Presently no significance ⇑ ⇑
⇑ ⇑ – high need; ⇑ – need; ~ – not so important
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not repeated under in vivo conditions. Therefore,  
Flachowsky and Lebzien (2012) proposed a five stage 
programme to evaluate the effects of such additives, 
with special consideration of phytogenic substances:
•  botanical characterization of the plant(s) and 

their composition
• analytical characterization of the active phyto-

genic substance(s)
•  in vitro studies to test effects of substances on 

rumen fermentation and methanogenesis (i.e. 
screening)

•  in vivo studies comprising feed intake, rumen fer-
mentation and CH4 emissions

•  long-term feeding studies with target animal spe-
cies/categories (animal health and performance, 
quality and safety of food of animal origin, envi-
ronmental impact, adaptation of microbes).
Another reason for the restricted use of phy-

togenic substances as methane inhibitors may be 
their potential transfer from feed into food of ani-
mal origin and possible residues in animal products 
and their effects in humans (EFSA, 2009; Speijers 
et al., 2010).

The development of synthetic compounds with 
specific activities to influence metabolic pathways 
essential to ruminal archaea may overcome some 
drawbacks of phytogenic compounds. Inhibition of 
methyl-coenzyme M reductase which catalyses the 
last step of reduction of CO2 to CH4 by hydrogeno-
trophic methanogenic archaea (Attwood and Mc-
Sweeney, 2008) has been studied extensively. In pre-
liminary studies by Martínez-Fernández et al. (2013) 
and Romero Perez et al. (2013), the authors tested 
the effects of inhibitors of methyl-coenzyme M re-
ductase, such as nitrooxy propionate compounds on 
ruminal fermentation and methane emissions. These 
substances are able to reduce the final step of CO2 
to CH4 by methanogenic archaea (Duval and Kinder-
mann, 2012). Martínez-Fernández et al. (2014) stud-
ied the effect of ethyl-3-nitrooxy propionate (E3NP) 
and 3-nitrooxypropanol (3NP) in vitro and in vivo 
in non-lactating sheep on ruminal methane produc-
tion, fermentation pattern, abundance of major mi-
crobial groups and feed degradability. In an in vitro 
batch culture trial, substantial reduction of methane 
production (up to 95%) without affecting the con-
centration of volatile fatty acids was found. Methane 
production in sheep decreased by 29% without any 
effect on rumen dry matter degradation in compari-
son with the unsupplemented control.

Reynolds et al. (2014) tested the effects of 
feeding two doses of 3NP on methane emissions, 
digestion and on the energy and nitrogen balance 
of lactating cows. The substance was administered 

through a rumen fistula. Daily methane production 
was reduced by 6.6% and 9.8% for 0.5 and 2.5 g of 
3NP·d–1, respectively. Homogenous mixing with feed 
or a slow-release bolus may be effective ways of ap-
plication. Haisan et al. (2014) applied 2.5 g 3NP (per 
cow and day) by hand-mixing into the total mixed ra-
tion (TMR) and found a reduction of methane emis-
sion by about 60% without a significant effect on dry 
matter intake, milk yield or milk composition. The 
additive increased body weight gain, indicating that 
the reduction of methane emissions increased energy 
availability to animals. Further studies are needed to 
understand the mode of action of 3NP in the rumen 
(Flachowsky and Lebzien, 2012).

Conclusions
Sustainability of the production of food of ani-

mal origin requires a comprehensive approach. Im-
provement of particular segments of the food chain 
does not essentially improve the whole system. In-
crease of farm animal productivity or feed efficien-
cy may also decrease the emissions of gases and the 
contamination of soils and water per unit of food of 
animal origin.

More complex calculations when it comes to 
parameters of efficient use of limited resources and 
reduction of emissions seem to be helpful in finding 
an optimum in production of food of animal origin. 
The following parameters should be considered in 
future calculations:
•   use of arable land (competition between various 

users)
•   efficient use of water for feed and animal pro-

duction
•   minimization of the use of fuel and other limited 

natural resources in the food chain
•   utilization of permanent grassland and co-prod-

ucts from agriculture and industry
•   feed efficiency as a key driver of productivity, 

resource use, and greenhouse gas emissions
•   reduction of greenhouse gas emissions per prod-

uct or per kilogram edible protein and along the 
entire food chain

•   conservation of biodiversity
•   plant and animal breeding as the starting points 

of the human food chain
•   comparison of production of food of animal ori-

gin with other protein sources, including vegetar-
ian foods (e.g., milk, meat based on soyabeans)

•   calculation of land use per inhabitant account-
ing for the eating patterns of the population; 
changing eating patterns

•   reduction of food wastage. 
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Producing food of animal origin is a very com-
plex process. Cooperation among animal scientists 
(nutritionists, breeders, animal keepers/farmers, ve-
terinarians, etc.) with scientists working in the fields 
of plant and feed science, ecology and economy 
seems to be necessary to solve the problems and to 
develop better and reliable land footprints.

In summary, more (food) for more (people) with 
less (resources and emissions) is one of the most 
important challenges for all those involved in feed/
food science and production.

Public funding of plant and animal research 
may be considered an important challenge for meet-
ing future animal protein demand (NRC, 2015) and 
improving sustainability along the entire food chain.
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