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Introduction

Modern poultry production has made excep-
tional progress and has become one of the largest 
and most significant sectors in the global food indus-
try. It integrates systems for breeding, rearing, and 
processing of various domesticated birds including 
broiler, ducks, and turkeys, mainly raised for meat 
and egg production (Abdelli et al., 2021). Modern 
broiler strains achieve market weight in just 5 weeks 
through advanced genetic selection and nutritional 
management (Khan et  al., 2022), with projections 

indicating further improvements in growth rates and 
efficiency to meet growing global meat demand by 
2050 (Kleyn and Ciacciariello, 2021). In 2017, the 
EU28 Poultry Meat Export Association reported that 
the average broiler meat consumption in the United 
States was estimated at 48  kg/head/year, whereas 
in Brazil, it was 44.2 kg/head/year (Ayalew et  al., 
2022). Thus, to maximise production performance, 
health, and well-being of birds, while minimising 
environmental pollution, it is essential to identify 
 cost-effective feed additives. Antimicrobial growth 
promoters (AGP, or antibiotics), were historically
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administered in subtherapeutic doses to food ani-
mals to enhance growth performance, improve feed 
conversion efficiency (FCR), and to control enteric 
pathogens such as those causing necrotic enteri-
tis and coccidiosis (CSCRA, 2016). For instance, 
Perić et al. (2009) reported that broilers fed a diet 
supplemented with antibiotics showed a  5.8% in-
crease in body weight (BW). This improvement was 
attributed to increased appetite, FCR, vitality, and 
optimised intestinal microflora (Torok et al., 2011). 
The growth-promoting mechanisms of antibiotics 
primarily involve modulation of intestinal microbial 
ecology. As demonstrated by Dibner and Richards 
(2005), AGP remodel the gut microbial diversity and 
relative abundance, creating an optimal microbiota 
profile for nutrient absorption and growth. Specific 
antibiotic effects on gut microbiota have been well-
documented. Fung et al. (2013) showed that 60 ppm 
salinomycin significantly altered caecal microbiome 
dynamics in broilers. Similarly, Dumonceaux et al. 
(2006) reported that application of virginiamycin 
(100 ppm) as a growth promoter increased Lactoba-
cillus abundance in broiler in the duodenal loop and 
proximal ileum. This indicates that virginiamycin 
can modify the composition of chicken gut micro-
biota. However, the widespread use of antibiotics 
such as bacitracin, salinomycin, penicillin, and vir-
giniamycin (at concentrations ranging from 0.07 to 
66 mg/l) in livestock production has raised signifi-
cant public health concerns due to the emergence of 
antimicrobial resistance, with potential consequenc-
es for both animal and human health (Nhung et al., 
2017 and Mehdi et  al., 2018). As a  result, many 
countries have implemented regulations to restrict 
or phase out antibiotics in animal feed. The Europe-
an Union initiated a ban in 2005 (Dibner and Rich-
ards, 2005), followed by South Korean Ministry of 
Food, Agriculture, Forestry and Fisheries (MAFF) 
in 2011 (Sampath et al., 2021), The U.S. Food and 
Drug Administration (FDA) (Zhao et  al., 2023) in 
2017, while Brazil and China enacted similar regu-
lations in 2018 (Torumkuney et al., 2022) and 2020 
(Melaku et al., 2021), respectively. Parallel to these 
regulatory changes, consumer preferences have 
markedly shifted toward conventionally produced 
meat from animals raised without routine antibiotic 
use, reflecting growing public health concerns and 
preferences for sustainable agricultural practices. 
These two scenarios have prompted researchers to 
explore antibiotic alternatives, specifically natural 
substances that can enhance poultry growth and 
feed efficiency while maintaining animal health 
(Diarra and Malouin, 2014). Consequently, imple-

menting sustainable feeding strategies and identify-
ing effective in-feed additives have become crucial 
for advancing antibiotic-free broiler production. 
Feed additives – defined as non-nutritive naturally 
derived substances incorporated in small quantities 
into basal diets – play a pivotal role in optimising 
overall animal performance (Mandey and Sompie, 
2021). Natural candidates including probiotics, pre-
biotics, organic acids (OA), plant extracts and es-
sential oils have gained significant attention in re-
cent decades. These additives are primarily used to 
improve growth efficiency, feed utilisation, laying 
capacity, and disease prevention in poultry (Aleli, 
2024). However, the precise mechanisms of action 
for each category, along with their unique bioactive 
properties, are not fully elucidated. This review sys-
tematically explores the underlying mechanisms of 
these additives and evaluates their impact on pro-
duction performance. Special emphasis is placed on 
their potential to transform poultry production sys-
tems in the coming decades. A comprehensive sum-
mary of common in-feed additives and their efficacy 
in poultry production is presented in Table 1.

Potential in-feed additives: 
mechanism of action and their impact 
on broiler production

Prebiotics 
Prebiotics are defined as non-digestible feed 

components that resist host enzymatic digestion 
but are selectively metabolized by beneficial in-
testinal microbiota to produce short-chain fatty 
acids (SCFA), including propionate, acetate and 
butyrate (Józefiak et  al., 2008). These prebiotic 
components can enhance broiler performance by 
promoting intestinal health and have emerged as 
effective alternatives to antibiotic growth promot-
ers (Morales-Lopez et al., 2009). In modern poultry 
production, the most clinically significant prebiotics 
are derived from yeast cell walls (Saccharomyces 
cerevisiae) and fermentation byproducts. These in-
clude β-glucans, mannan-oligosaccharides (MOS), 
fructooligosaccharides (FOS), and D-mannose, all 
of which have demonstrated efficacy in supporting 
intestinal health (Li and Karboune, 2019). Among 
these, MOS and FOS prebiotics have emerged as 
particularly promising alternatives to antimicro-
bial growth promoters. Recent studies suggest that 
supplementing MOS to poultry diets can reduce 
the count of hindgut pathogenic bacteria, particu-
larly during periods of high pathogen exposure  
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(Castillo et  al., 2008). Similarly, Juśkiewicz et  al. 
(2003) found a  decrease in ammonia emissions in 
turkeys with the inclusion of MOS supplement. Lit-
erature also documents that dietary MOS can signif-
icantly lower the number of pathogens. Some stud-
ies have proved that MOS supplementation exerts a 
considerable effect on gut histological structure in 
broilers. For instance, Baurhoo et al. (2007) report-
ed that chicks fed a diet supplemented with mannose 
and mannoproteins showed a significant increase in 
the intestinal villus cells. More recently, Kwon et al. 
(2024) demonstrated that dietary mannan-based sup-
plements have increased the villus height-to-crypt 
depth ratio in young broilers, indicating improved 
nutrient absorption capacity. Nochta et  al. (2010) 
also found a  remarkable improvement in apparent 
nutrient digestibility of broilers with response to 
mannan supplementation, while Bednarczyk et  al. 
(2016) demonstrated that 0.2% mannanoligosac-
charide inclusion in the chicken diet conferred in-
testinal health benefits exceeding antibiotic effects. 
These advantages are mediated through three pri-
mary mechanisms: competitive exclusion of patho-
genic bacteria, improved intestinal morphology (in-
creased villus height and goblet cell density), and an 
increased colonisation by beneficial bacteria. Zhang 
et al. (2012) demonstrated that β-glucan supplemen-
tation significantly reduced the relative abdominal 
fat weight of broilers by 16.0% (P < 0.05). Addi-
tionally, Rehman et  al. (2020) reported improved 
growth performance and antibody titre against in-
fectious bursal disease in broilers following dietary 
prebiotic inclusion. The unique chemical stability of 
prebiotics allows them to resist degradation by en-
zymes in the digestive tract, reaching the intestine 
where they selectively stimulate beneficial micro-
bial populations. These microbes metabolise pre-
biotics to generate valuable compounds including 
short-chain fatty acids, essential vitamins, and natu-
ral antimicrobial substances that support gut health 
while inhibiting pathogenic microorganisms. More-
over, the fermentation products generated by benefi-
cial gut microbiota significantly strengthen intesti-
nal epithelial barrier function, leading to improved 
nutrient absorption and overall growth performance 
of animals. Prebiotic-mediated modulation of the 
gut microbiome is closely associated with immune 
system regulation. Oligosaccharides are known for 
their immunomodulatory properties within the gas-
trointestinal tract, including promoting pathogenic 
bacterial clearance, activating T cell-dependent 
immune responses, and suppressing proinflamma-
tory cytokine activity (Bonos et al., 2010). Through 

competitive prevention of pathogen colonisation, 
prebiotics effectively reduce the concentration of 
pathogen-associated molecular patterns (PAMP) 
produced by harmful microorganisms. These mol-
ecules are detected by pattern recognition recep-
tors (PRR), such as toll-like receptors (TLR) and  
NOD-like receptors (NLR) expressed on the surface 
of sentinel cells (Amarante-Mendes et  al., 2018). 
Upon binding to PAMP, these PRR activate sentinel 
cells, including macrophages, epithelial cells, den-
dritic cells, and mast cells, triggering cytokine re-
lease and initiating innate immune responses. These 
signals are subsequently detected by immune cell 
receptors, thereby contributing to the modulation 
of the host’s immune system. Dietary supplemen-
tation with prebiotics, particularly MOS and FOS, 
has been shown to improve broiler performance 
through their effects on gut health, pathogen reduc-
tion, and immune modulation. These combined ef-
fects result in improved growth, nutrient absorption, 
and overall animal health. The increased produc-
tion of short-chain fatty acids (SCFA) like acetate, 
propionate, and butyrate during the fermentation of 
prebiotics supports gut health by reducing harmful 
bacteria while stimulating the growth of beneficial 
gut microbiota. This leads to healthier broilers with 
improved feed conversion rates, reduced pathogen 
load, and better overall performance, contributing to 
higher-quality poultry products. Additionally, stud-
ies suggest that prebiotics like β-glucan may contrib-
ute to improved meat quality by reducing abdominal 
fat deposition in broilers. The beneficial effects of 
prebiotics extend beyond gut health, as they also 
enhance immune function, leading to more robust 
disease resistance and potentially safer meat prod-
ucts with lower microbial contamination. Based on 
existing scientific evidence, optimal broiler produc-
tivity may be supported through dietary inclusion of 
0.1 to 0.5% MOS and FOS, along with 0.1 to 0.25% 
β-glucan in total feed. 

Probiotics
Probiotics are live beneficial microorganisms that 

promote host health by maintaining intestinal micro-
bial balance and physiological functions. These mi-
croorganisms are resistant to gastric acid, bile salts, 
and digestive enzymes, which allows them to colo-
nize the gastrointestinal tract and effectively compete 
with pathogenic bacteria. Their mechanisms of action 
include competitive exclusion, immune modulation, 
and metabolic regulation, leading to improved ani-
mal health and productivity (Sampath et al., 2022). 
In poultry production, probiotics can also increase 
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feed efficiency, regulate apoptosis, increase energy 
digestibility, and improve the breakdown of non-
starch polysaccharides (NSP) while positively influ-
encing caecal and litter microbiota. Different types 
of probiotics have been shown to inhibit pathogenic 
bacteria both in vitro and in vivo through a variety 
of mechanisms. The most widely used probiotics in 
poultry include Gram-positive bacteria such as Ba-
cillus, Lactobacillus, and Pediococcus, along with 
fungi like Aspergillus and Saccharomyces (Zom-
miti et al., 2020). Research indicates that probiotic 
efficacy varies by host species, with Saccharomy-
ces cerevisiae and Aspergillus oryzae being par-
ticularly effective in ruminants, while Lactobacil-
lus strains showing more beneficial outcomes in 
poultry. Probiotics maintain intestinal homeostasis 
through competitive inhibition of pathogens while 
modulating microbial metabolism by enhancing di-
gestive enzyme activity and reducing bacterial en-
zyme activity and ammonia production (Markowiak 
and Śliżewska, 2018; Aziz Mousavi et  al., 2018). 
A  study by Van Immerseel et  al. (2006) demon-
strated that dietary Lactobacillus improved the egg 
quality and reduced Salmonella contamination in 
chickens. Similarly, Jungersen et al. (2014) reported 
that specific Bifidobacterium strains (Bifidobacte-
rium animalis, B. thermophilum, and B. longum) ef-
fectively reduced the coccidiosis in broiler infected 
with Eimeria tenella. Recent work by Cho et  al. 
(2024) revealed that broilers receiving microbial 
muramidase (MR) and precision glycan (PG) as di-
etary eubiotics exhibited significant improvements 
in body weight gain, feed intake, serum carotenoid 
levels, and ileal microbial diversity compared to 
control groups. Zhang et al. (2023) reported a  lin-
ear increase in average daily gain, daily feed intake, 
and a  reduction in Clostridium perfringens counts 
in broilers supplemented with increasing levels of 
multi-probiotics consisting of Bacillus subtilis and 
Clostridium butyricum. Biswas et  al. (2023) fur-
ther highlighted the positive effects of probiotics 
(Bacillus subtilis 7.0 × 107 CFU/g, Bacillus licheni-
formis 4.1   ×  107 CFU/g) on broiler performance. 
Although Enterococcus faecium has been shown 
to improve feed conversion ratio (FCR) and modu-
late caecal microflora in broilers (Lan et al., 2017), 
safety concerns remain as some strains are associ-
ated with antibiotic resistance transfer and urogeni-
tal tract infections and endocarditis (Garsin et  al., 
2014). Therefore, it is essential to ensure that strains 
pose no health risks to animals before application in 
feeds. Probiotics exert nutritional effects by increas-
ing fibre digestion and enzymatic activity, thereby 

improving nutrient utilisation efficiency in poultry. 
Research by Wang et al. (2018) demonstrated that 
supplementing broilers with Bacillus subtilis was 
particularly effective under heat stress conditions 
through microbiota-mediated immunomodulation. 
However, contrasting results from Balamuralikrish-
nan et  al. (2017) showed no significant impact on 
feed intake or FCR with multi-strain probiotics, 
suggesting strain-specific and condition-dependent 
effects. Probiotics influence the intestinal microbi-
ota composition of poultry, with their effectiveness 
largely dependent on the presence of undesirable 
microbial populations that may impair growth. One 
of the primary mechanisms involves acidification of 
the gut environment through production of volatile 
fatty acids and organic acids during their breakdown. 
The lower pH creates unfavourable conditions for 
pathogenic colonisation in the digestive tract, effec-
tively preventing harmful microbes through com-
petitive inhibition. However, in cases where the gut 
microbiota is already balanced and free of growth-
limiting pathogens, probiotic supplementation may 
show limited effects. Optimal and safest dosing of 
probiotics in poultry diets varies depending on the 
specific strain and the desired outcomes, whether 
for growth performance, pathogen control, or im-
mune modulation. Based on current research, the 
following probiotic dosages are recommended for 
optimal efficacy in broiler production: Bacillus sub-
tilis (1.0 × 107 to 1.0 × 109 CFU/g), Lactobacillus 
(1.0 × 106 to 108 CFU/g), Saccharomyces cerevisiae 
(1 × 106 to 1 × 108 CFU/g), and Enterococcus fae-
cium (1.0 × 107 to 109 CFU/g). These concentrations 
have demonstrated safety and efficacy in improv-
ing broiler growth rates, egg quality, and resistance 
to pathogens when administered under appropriate 
conditions. 

Enzymes 
As non-traditional feed ingredients gain popu-

larity in poultry production, the use of exogenous 
enzymes has become increasingly important. To re-
duce the cost of ration formulation, alternative feed 
ingredients and lower-protein diets have recently 
been introduced. Particularly, soybean meal (SBM), 
is widely applied as a primary protein source, while 
yellow maize is the predominant energy source in 
animal feed. Enzymes are catalysts produced by 
cells to accelerate specific chemical reactions, in-
cluding those involved in digestion (Ayalew et al., 
2022). They can be derived from both plant and 
microbial sources, with significant research at-
tention directed toward phytase production from  
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filamentous fungi, including Aspergillus, Myce-
liophthora, Mucor, Penicillium, Rhizopus, and 
Trichoderma (Jatuwong et  al., 2020). The poultry 
industry currently utilises three main classes of feed 
enzymes: phytases, carbohydrases (non-starch poly-
saccharides, NSP), and proteases. Market trends 
over the past five years have promoted phytases 
as the dominant enzyme category, followed by xy-
lanases, with cellulases (glucanases) representing 
a smaller market segment. Phytases provide crucial 
economic and environmental benefits by reducing 
reliance on costly inorganic phosphorus supple-
ments and minimising phosphorus pollution from 
manure. This is particularly significant as 60–75% 
of phosphorus in feed grains exists as phytate, an 
organic form indigestible by monogastric animals 
(Steiner et  al., 2007). In addition to phosphorus 
liberation, phytases mitigate the antinutritional ef-
fects of phytic acid while increasing mineral and 
protein bioavailability, thereby improving overall 
bird health. The recent surge in dietary energy costs 
has prompted nutritionists to reconsider the value 
of NSP enzymes as potential cost-saving tools in 
poultry feed formulations. Unlike wheat-based di-
ets, where enzyme targets the reduction of intestinal 
viscosity from soluble fibres, maize-soybean meal 
diets require a different approach due to their low 
soluble fibre content. In these formulations, NSP 
enzymes are believed to primarily target insoluble 
fibre components to disrupt cell wall structures and 
improve nutrient accessibility. Research indicates 
that high levels of NSP in poultry diets lead to intes-
tinal hypertrophy, increasing gut mass and associ-
ated maintenance costs (Morgan et al., 2022). These 
modifications to the digestive tract lower digestive 
efficiency and increase the nutrient requirements for 
gut maintenance, consequently diverting nutrients 
away from growth processes. In addition to phytase 
and NSP enzymes, proteases represent another im-
portant class of feed enzymes. These proteolytic en-
zymes, which hydrolyse peptide bonds in proteins, 
are widely distributed in plants, animals, and micro-
organisms. Previous study by Bekhit et  al. (2014) 
have reported that exogenous proteases such as col-
lagenase from Clostridium histolyticum, aspartic 
protease from A. oryzae, thermophile protease from 
a  Bacillus strain, and caldolysin from a  Thermus 
strain are commercially used to improve meat ten-
derness. In addition, Adebiyi and Olukosi (2015) 
demonstrated that the addition of 300 or 600 g/kg 
of a  carbohydrase and protease mixture to a diet 
based on wheat distillers’ dried grains with solubles 
(DDGS) increased metabolizable energy in broilers 

and turkeys. More recent work by Jabbar et al. (2021) 
found that including 1% prilled palm fat combined 
with lyso-lecethin to broiler diets positively affected 
nutrient digestibility, body weight gain, and FCR. 
Adding enzymes to broiler diets offers nutritional, 
economical, and environmental benefits (Doskovic 
et  al., 2013). Extensive research has shown that 
supplementing broiler diets with combinations of 
xylanase, amylase, and protease improves nutrient 
digestibility and growth performance. For instance, 
Cowieson and Ravindran (2008) observed that 
broilers fed a diet supplemented with a combina-
tion of xylanase, amylase, and protease (500 mg/t) 
increased energy availability by 3–5%. Similarly, 
O’Neil et al. (2017) showed improved weight gain, 
feed intake, crude protein digestibility, and nitrogen 
and fibre absorption in broilers fed xylanase-supple-
mented sorghum-based diets. These positive effects 
may result from the synergistic action of enzymes 
on various chemical bonds in indigestible feed in-
gredients, thereby increasing the energy available 
for growth. Research by Park et al. (2018) demon-
strated that incremental dietary protease supplemen-
tation (0–0.09%) in broiler diets linearly increased 
their BW, ADG while reducing FCR. The latter au-
thors also reported linear improvements in the di-
gestibility of DM, CP, DE, and amino acids, as well 
as the upregulation of growth-related genes such as 
IGF1, IGF2, GH, and LEP in the liver, and MYOD1 
and MYOG in breast muscles. These dose-depen-
dent improvements likely result from enhanced pro-
tein hydrolysis and amino acid availability due to 
protease action, which optimises energy metabolism 
and stimulates expression of growth-related genes, 
ultimately leading to better nutrient utilisation and 
growth performance in poultry. Similarly, Liu and 
Kim (2017) reported increased BW and reduced 
FCR and ileal digesta viscosity in broilers fed di-
ets supplemented with xylanase. The researchers 
also observed significant morphological improve-
ments in the small intestine, including increased 
villus height and villus height-to-crypt depth ratios 
in the  duodenum, jejunum, and ileum. Xylanase 
specifically targets and breaks down xylans, a type 
of NSP prevalent in grains like wheat and barley. 
These NSP are indigestible for poultry and tend to 
increase digesta viscosity, thereby impairing nutri-
ent absorption. By breaking down these complex 
polysaccharides, xylanase reduces digesta viscosity, 
leading to improved nutrient diffusion and absorp-
tion in the intestines – mechanisms that collectively 
improve BW and FCR. Additionally, increased vil-
lus height and villus-to-crypt ratio enhance nutrient 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/collagenase
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/collagenase
https://www.sciencedirect.com/topics/food-science/clostridium
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/duodenum
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/jejunum
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absorption and create a less favourable environment 
for pathogenic bacteria. This adaptation likely oc-
curs in response to reduced digesta viscosity and 
improved gut health, facilitating more efficient nu-
trient uptake. Mohammadigheisar and Kim (2018) 
observed that chicks fed a low CP diet supple-
mented with protease showed higher BWG and DM 
digestibility. However, they also noted a  negative 
impact on the digestibility of total essential amino 
acids (TEAA) and total non-essential amino acids. 
The positive effect of phytase supplementation on 
broiler performance was also reported by Dang et al. 
(2022) and Sampath et al. (2023). However, Kumar 
and Kim (2022) showed that high phytase inclusion 
levels (1,500 FTU/kg) produced limited improve-
ments in ADFI and FCR, while adversely affecting 
meat quality. These outcomes could be attributed 
to excessive phytase levels disrupting nutrient bal-
ance, altering amino acid and mineral availabil-
ity, and inducing oxidative stress. These metabolic 
disturbances can compromise meat quality param-
eters despite potential modest gains in growth per-
formance parameters (ADFI and FCR). Based on 
current evidence, optimal enzyme supplementation 
levels for broiler diets should be carefully calibrat-
ed within the following ranges: phytase at 500–
1  500  FTU/kg (fungal phytase units per kilogram 
of feed), xylanase at 500–1  000 mg/t of feed, and 
protease at 300–600  g/kg. These dosages are con-
sidered safe and effective for promoting growth and 
feed efficiency. Excessive phytase supplementation,  
exceeding 1 500 FTU/kg, may induce nutrient im-
balances and potentially compromise meat quality 
(Kumar and Kim (2022). Therefore, careful optimi-
sation of enzyme dosages is necessary to maximise 
benefits while avoiding adverse outcomes.

Organic acids
Currently, a  wide variety of ingredients and by-

products are applied in the poultry industry to re-
duce costs and improve performance. OA, a group 
of carboxylic acids including fatty acids with the 
R-COOH chemical structure (Abbas et  al., 2022) 
has been widely utilised in poultry production as 
feed additives and/or in drinking water to minimise 
the effects of feedborne pathogens like Salmonella 
spp. Dietary acids used in poultry can be classified 
into two categories: 1) inorganic acids (IOA) and 
2) OA. Compared to IOA, OA are more effective 
in improving gastric proteolysis and amino acid and 
mineral digestibility (Nguyen et  al., 2020). Acids 
such as butyrate, propionate, and acetate are natu-
rally produced in the anaerobic environment of the 

gastrointestinal tract (GIT). OA typically consists of 
saturated monocarboxylic acids or their derivatives 
(Ricke 2003). Previous studies have demonstrated 
the positive effects of OA in broiler rearing. For in-
stance, Baghban-Kanani et al. (2023) reported that 
dietary inclusion of OA improved feed utilisation 
and reduced pathogenic microbial loads in broilers. 
Similarly, Chowdhury et  al. (2009) observed that 
adding 0.5% citric acid to broiler diets enhanced 
growth rate, feed intake, carcass yield, and bone ash 
levels. Adhikari et al. (2020) also reported that 0.9% 
dietary OA has improved the growth rate in broilers 
infected with Salmonella typhimurium. Moreover, 
Sabour et al. (2019) observed an increased growth 
rate in broilers receiving a blended OA formulation 
containing sodium butyrate, citric acid, phosphoric 
acid, acetic acid, propionic acid, formic acid, and lac-
tic acid. The improved performance of broilers with 
OA supplementation can be attributed to increased 
digestibility of energy and protein in the feed, as 
well as a reduced abundance of microbial pathogens. 
Meanwhile, the FCR likely results from lower feed 
intake, combined with better nutrient utilisation, 
leading to higher weight gains in broilers. Another 
reason could be the proliferation of pathogenic mi-
crobes or bacteria in the gastrointestinal tract, which 
can damage villus structures and trigger excessive 
epithelial cell proliferation, leading to thickened 
intestinal membranes. This pathological thickening 
may impair nutrient absorption capacity and conse-
quently affect growth performance. Several studies 
have demonstrated the positive effects of organic ac-
ids (OA) on nutrient digestibility in broilers (Rodjan 
et al., 2017; Sureshkumar et al., 2021). Chowdhury 
et  al. (2009) noted increased phosphorous utilisa-
tion in broilers supplemented with citric acid, while 
Garcia et al. (2007) observed improved growth per-
formance and apparent ileal digestibility in birds 
receiving 5  000–10  000 ppm formic acid (FA). 
However, Hernández et al. (2006) found minimal ef-
fects on nutrient digestibility at lower FA inclusion 
levels (5–10 g/kg), potentially due to pH-mediated 
modulation of specific microbial populations af-
fecting nutrient digestion and absorption. Research 
by Rodríguez-Lecompte et al. (2012) revealed that 
OA-supplemented diets significantly increased vil-
lus height and surface area in the duodenum, jeju-
num and ileum of chicks. Complementary findings 
by Khan and Iqbal (2016) showed that chicks fed 
diets containing OA blends had higher levels of ben-
eficial bacteria, such as Lactobacilli, while reduced 
populations of harmful bacteria, like coliforms and 
Clostridia, in the ileum. The increased presence of 
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Lactobacilli in OA-supplemented broilers may be 
attributed to their lower susceptibility to pH fluctua-
tions, whereas coliforms are more sensitive to pH 
reductions in the gastrointestinal tract. Adil et  al. 
(2010) observed that dietary supplementation of 
broilers with 3% butyric acid, 3% fumaric acid and 
2% fumaric acid resulted in significantly increased 
villus height in the duodenum, jejunum, and ileum, 
respectively. The morphological improvement in 
individual segments of the small intestine likely re-
flects the role of the intestinal epithelium as a protec-
tive barrier against pathogens and toxic substances 
in the lumen. In modern poultry production, broilers 
are often characterised by less robust immune sys-
tems. The rapid growth and efficient feed utilisation 
frequently result in compromised immune function 
(Ghazvinian et  al., 2018). The accelerated growth 
outpaces immune system development, increasing 
disease susceptibility. The inclusion of OA in their 
diet can regulate pathogenic bacterial populations, 
potentially enhancing immune resilience. Abbas 
et  al. (2013) observed significantly higher New-
castle disease antibody titres in OA-supplemented 
broilers, while Zhang et al. (2011) observed that so-
dium butyrate reduced oxidative stress through in-
creased antioxidant activity, potentially via NF-κB 
pathway inhibition. However, contrasting findings 
by Levy et  al. (2015) showed no intestinal health 
improvements with OA supplementation, highlight-
ing the influence of variables like microbial chal-
lenges, bird genetics, acid type/dosage, and feed 
composition. Despite these inconsistencies, OAs are 
widely regarded as effective additives for improving 
broiler growth performance, nutrient digestibility, 
and gut health. Safe and effective supplementation 
typically ranges between 0.5 and 3% depending on 
the specific acid used. Combining different OAs can 
exert synergistic effects, thus careful consideration 
of dosages and combinations is essential to optimize 
outcomes while avoiding adverse effects on meat 
quality or intestinal health.

Phytogenic 
Phytogenic feed additives (PFA) are biological-

ly active compounds increasingly used in poultry 
production due to their beneficial effects and cost-
efficiency. These plant-derived additives are broadly 
categorized as herbs/spices or based on extraction 
methods, as essential oils (EO) and oleoresins (Ab-
delli et al., 2021). Their non-toxic, economical, and 
environmentally sustainable properties make them 
particularly attractive for modern poultry produc-
tion (Madhupriya et  al., 2018). Various plants,  

including basil (Ocimum basilicum), oregano (Orig-
anum vulgare), thyme (Thymus vulgaris), sage (Sal-
via officinalis), alfalfa (Medicago sativa), and chlo-
rella (Chlorella vulgaris), are generally recognised 
as safe (GRAS) for animal feed applications (Marti-
nez-Mayorga et al., 2013). Research has consistent-
ly demonstrated the growth-promoting effects of 
specific PFA. Gurbuz and Ismael (2016) reported 
that 1.5% peppermint (Mentha piperita) supplemen-
tation significantly enhanced broiler growth perfor-
mance, while Al-Kassie (2010) observed improved 
body weights following supplementation of this 
PFA. In addition, Abbas (2010) observed that broil-
ers fed diets supplemented with 3 g/kg basil achieved 
the best FCR value. Recent advancements in extrac-
tion techniques and the identification of active in-
gredients have accelerated the adoption of phyto-
genic extracts as alternatives to antibiotics in animal 
nutrition. Herbal products are typically incorporated 
into animal feed in dried and crushed forms or as 
crude extracts containing active herbal ingredients 
(Wang et  al., 2024). Shamma et al. (2019) study 
showed that broilers fed a diet supplemented with 
0.3 ml/l thyme oil had significantly increased body 
weight, body weight gain and improved FCR, along 
with increased antibody titre against infectious bur-
sal disease (IBD). These positive findings could be 
attributed to the phenolic components in thyme, 
which contribute to improved growth and nutrient 
digestibility in broilers. Several studies have docu-
mented the beneficial effects of sage supplementa-
tion in poultry production. Levkut et al. (2010) dem-
onstrated improvements in growth performance and 
feed conversion ratio with sage inclusion. More re-
cently, Bahadoran et al. (2023) found that 0.2% di-
etary sage modulated pulmonary hypertensive re-
sponses, enhanced antioxidant status through 
increased enzymatic activity, and improved intesti-
nal morphology, expanding absorptive surface area 
in broilers. Similarly, He et al. (2021) observed sig-
nificant linear increases in body weight and average 
daily feed intake in birds supplemented with 75 g/kg 
alfalfa meal. The inclusion of alfalfa meal also re-
sulted in significantly lower pH in the duodenum, 
caecum, and breast muscle. Furthermore, Vlaicu 
et  al. (2022) reported that combined supplementa-
tion of basil, thyme and sage had a beneficial effect 
on broiler meat quality parameters. Secondary plant 
metabolites (alkaloids, glycosides, flavonoids, phe-
nolic acids, saponins, tannins, terpenes, anthraqui-
nones, and steroids) and bioactive compounds exert 
notable physiological and pharmacological effects 
in animals (Roy et  al., 2022). Research by  
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Begum et al. (2014) demonstrated a dose-dependent 
response to Platycodi radix extract (0–0.15% inclu-
sion), with linear improvements in BWG, energy 
digestibility, bone strength, and insulin-like growth 
factor levels in broilers. Subsequent work by Li 
et al. (2015) confirmed that phytoncide supplemen-
tation improved growth efficiency while reducing 
noxious gas emissions from poultry production. Ad-
ditionally, dietary supplementation with 0%, 0.2%, 
0.4%, and 0.6% quercetin has been shown to im-
prove body weight gain and feed intake in 35-day-
old broilers (Dang et al., 2022). This positive out-
come could be attributed to several factors, including 
the botanical source, concentration, supplementa-
tion duration, feed composition, experimental con-
ditions, and the age and health status of the animals. 
In addition to herb extracts, Essential oils (EO) have 
emerged as particularly promising phytogenic addi-
tives in poultry nutrition. Recent research has dem-
onstrated the efficacy of various EO, including cin-
namaldehyde (Paraskeuas et  al., 2017), Citrullus 
lanatus (Marume et  al., 2020), peppermint oil  
(Abdel-Wareth et  al., 2020), and tea tree (Puvača 
et al., 2020). Liu et al. (2018) specifically investi-
gated carvacrol essential oil and confirmed its posi-
tive effects on intestinal barrier function in broilers. 
Plant extracts have also shown significant potential. 
Park and Kim (2020) reported improved broiler 
growth performance with the supplementation of 
Achyranthes japonica extract (AJE), while Abd El-
Hack et  al. (2018) and Shokrollahi and Sharifi 
(2018) observed enhanced growth in both broilers 
and laying hens supplemented with black cumin 
(Nigella sativa) seeds. However, contrasting results 
were reported by Karadağoğlu et  al. (2019), who 
found no significant difference in growth perfor-
mance of Japanese quails fed diets contain black 
cumin. Hussein et al. (2020) found that a combina-
tion of peppermint, chamomile, and prebiotic yeast 
cell wall was as effective as salinomycin in main-
taining weight gain and FCR in coccidiosis-chal-
lenged broilers. The effectiveness of yucca-derived 
saponins on growth performance depends on the 
broiler’s health status. Su et al. (2016) reported that 
yucca saponins promoted growth in healthy broil-
ers, while Oelshlager et al. (2019) found no signifi-
cant effect during active coccidial infection, sug-
gesting reduced bio-efficacy during immune stress. 
This highlights the importance of evaluating digest-
ibility, as it directly influences feed efficiency in 
poultry production. Improving digestibility not only 
enhances feed efficiency but also reduces undigest-
ed feed residues in the gut, thereby preventing intes-
tinal disorders. Abdel-Wareth et al. (2020) demon-

strated that dietary supplementation with 0, 74, 148, 
222, and 296 mg/kg of peppermint oil linearly in-
creased the digestibility of CP, ether extract (EE), 
and phosphorus in 44-week-old laying hens  
(Abdel-Wareth et  al., 2020). Complementary find-
ings by Dang et  al. (2021) showed that YGF251 
supplementation – a herbal pharmaceutical extract 
stimulating insulin-like growth factor-1 secretion – 
significantly enhanced protein utilisation and re-
duced ammonia excretion in laying hens, highlight-
ing the potential of plant-derived compounds to 
improve nitrogen metabolism. Phytogenic additives 
also exhibit protective effects against mycotoxins 
and inflammatory responses. Rashidi et  al. (2020) 
documented that dietary licorice extract mitigated 
liver damage in broilers caused by aflatoxin B1, as 
evidenced by lower alkaline phosphatase, aspartate 
aminotransferase, and alanine transaminase activity, 
and decreased malondialdehyde (MDA) concentra-
tion in breast meat. Moreover, Pirgozliev et  al. 
(2019) observed that a phytogenic blend containing 
carvacrol, cinnamaldehyde, and capsicum oleoresin 
downregulated pro-inflammatory cytokines 
(interferon-γ and IL-6) in broilers under non-chal-
lenged conditions, suggesting immunomodulatory 
properties. The beneficial effects of PFA on broiler 
and layer performance are primarily attributed to 
their digestion-stimulating properties, which im-
prove nutrient absorption of key elements, including 
selenium, B-complex vitamins, and β-carotene. Al-
though some studies reported a reduction in popula-
tions of beneficial bacteria like Lactobacillus fol-
lowing plant extract supplementation, others 
demonstrated an increased abundance of beneficial 
bacterial orders like Clostridiales or Lactobacillales 
in broilers supplemented EO. For example, Perri-
cone et  al. (2020) found that a  plant extract from 
green tea and pomegranate increased the count of 
lactic acid bacteria, which play crucial roles in 
maintaining intestinal homeostasis and enhancing 
immune function. Compared to antibiotics, phyto-
genic products offer distinct advantages, including 
cost-effectiveness and a lower risk of resistance de-
velopment, making them sustainable alternatives for 
improving various production parameters. These 
natural compounds have proven effective in improv-
ing growth, performance, health status, reproductive 
efficiency, and environmental sustainability through 
reduced emissions in monogastric animals. Howev-
er, evaluating PFA remains challenging due to the 
wide variability in extracts and formulations. Stan-
dardising evaluation systems is essential to enable 
conclusive assessments and further increase poultry 
production efficiency. 
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Conclusions
Effective nutrition is key to sustainable poultry 

production, enhancing feed utilisation and reduc-
ing environmental impact. By optimising feed con-
version efficiency, poultry operations can improve 
their financial viability while lowering resource 
demand and carbon footprint. However, the envi-
ronmental effects of grain and soybean production, 
coupled with long transport chains, require care-
ful consideration. Ingredients should be assessed 
based on their specific production methods, such 
as precision farming and conservation tillage, to 
minimise environmental degradation. Future re-
search should focus on refining these practices and 
exploring novel feed ingredients to further address 
sustainability challenges. Aligning these strategies 
with global sustainability goals will strengthen 
both environmental and economic stability in poul-
try farming.
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