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Introduction

The livestock industry is currently facing new 
challenges in ensuring safe and sustainable pro-
duction practices (Zhang et al., 2021). Consequent-
ly, there has been increasing focus on developing 
feed solutions that prioritise safety, efficiency, and 
environmental sustainability (Tang et al., 2023). 
Numerous studies indicate that biological feeds, 
especially those employing bacterial fermentation 
in combinations with enzymatic hydrolysis, offer 
promising solutions to current challenges in animal 
production (Lai et al., 2024). Feeds produced using 

these methods represent an innovative approach in 
animal nutrition that integrates fermentation engi-
neering with enzymatic processing technologies. 
Bacterial fermentation combined with exogenous 
enzyme hydrolysis can address the problem of in-
sufficient enzyme production during microbial fer-
mentation. The synergistic action provides three 
key advantages: (1) more complete degradation 
of macromolecules into bioavailable nutrients,  
(2) significant reduction of anti-nutritional factors, 
and (3) enhanced conversionefficiency of specific 
substrate components (Chen et al., 2021). The 
composition of this feed consists of raw materials,  
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enzymes, and microorganisms, prepared according to 
the current national legislation (Li et al., 2020). Com-
pared to traditional fermentation methods, enzyme-
enhanced fermentation offers distinct advantages 
including faster processing times, reduced produc-
tion costs, and improved environmental sustainabil-
ity (Sun et al., 2021). The synergistic action between 
microbial and enzymatic components increases nutri-
ent bioavailability while modifying the feed matrix 
to improve digestibility. Furthermore, this approach 
provides significant benefits to animal health, includ-
ing favourable modulation of intestinal microbiota 
and enhanced disease resistance (Sun et al., 2021; 
Song et al., 2022). The efficiency of enzyme-assisted 
fermentation can be assessed through multiple pa-
rameters, including fermentation products, fermenta-
tion rate, substrate conversion rate, cell growth, pH 
change and product quality (Zhang et al., 2024; Li 
et al., 2021). Studies demonstrate that enzyme-forti-
fied bacterial fermentation effectively liberates bound 
nutrients in plant-derived feedstuffs, including gluco-
sides, phytic acid complexes, and other nutrients in 
plant-based diets (Mukherjee et al., 2016). Feed pro-
cessing using microbial fermentation and subsequent 
enzymatic treatment exerts a positive effect on live-
stock productivity and meat quality (Hu et al., 2020). 
This review provides a comprehensive overview of 
the various applications, effects, and emerging trends 
associated with the use of enzyme-assisted bacte-
rial fermentation in animal production. Furthermore, 
it establishes a scientific foundation for the future 
development and integration of alternative feed re-
sources in livestock farming. 

Microbial and enzymatic components 
in synergistic feed fermentation 
systems

Enzyme-enhanced microbial fermentation
Microbial-enzymatic synergy in feed process-

ing involves the coordinated action of microbial me-
tabolism and enzymatic hydrolysis (Li et al., 2023). 
The combined action encompasses a range of sub-
strates, strains, and enzymes, with modifications to 
strain types and fermentation conditions substan-
tially influencing enzyme activity. In a cooperative 
fermentation system, enzymes play a crucial role 
in accelerating the breakdown of substrates, as well 
as increasing microbial fermentation efficiency by 
regulating lactic acid production and pH changes  
(Du et al., 2023). Microbial activity initiates the pro-
cess by decomposing complex substrates into smaller 
molecules, which subsequently facilitates more effi-

cient enzymatic hydrolysis (Gohar et al., 2024). The 
supplemented enzymes interact synergistically with 
microbial enzymes to optimize overall fermentation 
outcomes (Patel et al., 2023). For optimal results in 
enzyme-enhanced bacterial fermentation systems, 
enzyme selection should consider both substrate 
composition and microbial profile, with concentra-
tions carefully titrated according to the principle of 
balanced supplementation (Li et al., 2021). The time 
point of enzyme addition depends on fermentation ob-
jectives, enzyme properties, and fermentation system. 
For growth promotion, enzymes are typically added 
during the early fermentation phase; for metabolite 
accumulation, addition occurs at mid-fermentation; 
and for product purification or stabilisation, enzymes 
are added during late fermentation stages (Vishnu 
Prasad et al., 2020).

Common microbial strains in enzyme-
supplemented feed fermentation

Microbial strains frequently employed in en-
zyme-enhanced feed fermentation primarily comprise 
yeasts, bacilli, and moulds (Li et al., 2021). Examples 
of these strains include Lactobacillus, L. plantarum, 
L. acidophilus, Saccharomyces cerevisiae, Candida, 
Bacillus subtilis, B. coagulans and others. Lactic acid 
bacteria are particularly effective in fermenting car-
bohydrates, generating significant quantities of lactic 
acid and other beneficial metabolites while exhibiting 
resistance to acidic conditions and bile salts (Ayyash 
et al., 2021). These products lower feed pH, inhibit 
the proliferation of undesirable microorganisms, en-
hance the nutritional value of the diet, and promote 
animal intake and immune function (Vieco-Saiz 
et al., 2019). In addition, yeasts are capable of metab-
olising carbohydrates and fats present in feed, as well 
as producing various bioactive compounds, including 
alcohol (Jach et al., 2018). Due to their capacity to 
modify proteins, nucleic acids, vitamins and polysac-
charides, these mircoorganisms play a crucial role in 
animal diets (Patterson et al., 2023). Specific yeast 
strains, such as Saccharomyces and Candida contrib-
ute to the development of wine-like sensory charac-
teristics of fermented feed, enhancing its palatabil-
ity and flavour profile (Wang et al., 2022). Notably,  
B. subtilis secrets various extracellular enzymes, in-
cluding amylases, proteases, lipases, and cellulases, 
which collectively degrade macromolecular feed 
components, significantly improving nutrient uti-
lisation efficiency (Akintunde and Chukwudozie, 
2021). In addition to enzymatic properties, Bacil-
lus species are recognised for their effectiveness in 
controlling intestinal diseases and strengthening host 
immune responses (Palkovicsné Pézsa et al., 2022).  
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Common members of the genus Bacillus in feed fer-
mentation include Bacillus subtilis, B. licheniformis,  
B. coagulans, and B. cereus. These Bacillus species 
are known to produce extracellular enzymes, such as 
proteases, haemicellulases, and cellulases, which ef-
ficiently degrade complex starches and proteins into 
simpler, more digestible compounds. The enzymatic 
activity not only improves the fermentation process 
but also the functional properties of feed substrates 
(Dumitru et al., 2022). These bacterial strains me-
tabolise feed components while their enzymes break 
down complex nutrients, collectively improving 
digestion, nutrient absorption, and feed efficiency, 
thereby supporting animal growth and health. 

Common enzymes applied in enzyme-
enhanced microbial feed fermentation 

In microbial feed fermentation with enzymatic 
supplementation, the most commonly used enzymes 
include non-starch polysaccharidases (e.g., cellulases, 
xylanases, glucanases), proteases, and amylases. 
Non-starch polysaccharidases catalyse degradation 
of structural polysaccharides such as cellulose and 
hemicellulose into simpler carbohydrates (Habte-
Tsion et al., 2018). Proteases hydrolyse feed 

proteins into smaller peptides and free amino acids, 
significantly improving protein digestibility and 
assimilation. Supplementing proteases to bacteria-
fermented feed has been shown to improve protein 
utilisation efficiency by up to 26% (Park et al., 2020). 
While amylases are not always central to these 
processes, their incorporation is highly beneficial, 
especially in starch-rich feeds, where they catalyse 
the breakdown of complex carbohydrates into 
readily absorbable sugars (Aderibigbe et al., 2020). 
Cellulases, xylanases, and glucanases are distinct 
enzymes that act complementarily to improve 
feed quality and nutritional value through targeted 
degradation of fibre components (Lamp et al., 2015). 
In microbial fermentation systems, the participating 
microorganisms naturally secrete various enzymes 
capable of modifying feed substrates. These 
microbiallyderived enzymes work in conjunction 
with supplemented enzymes to optimise substrate 
breakdown and nutrient release. Recent advances 
in feed formulations have identified optimal 
combinations of substrates, microbial strains, and 
enzymatic supplements for optimal fermentation 
outcomes. These key components are summarised in 
Table 1.

Table 1. Substrates, strains and enzymes commonly used in enzyme-enhanced bacterial feed fermentation
Substrates Strains Enzymes References
Soybean meal Bacillus subtilis, Saccharomyces cerevisiae, 

Lactobacillus plantarum, Lactobacillus rhamnosus
Proteases Heng et al. (2022)

Rapeseed meal Saccharomyces cerevisiae, Aspergillus niger, 
Aspergillus oryzae, 
Bacillus subtilis, 
Bacillus cereus, 
Lactobacillus casei

Alkaline protease, proteases, papain, 
neutral protease, endogenous enzyme 
complex, cellulase, pectinase, 
flavoured protease

Li et al. (2022)

Cottonseed meal Bacillus subtilis Papain Sun et al. (2012)
Palm kernel meal Lactobacillus plantarum, Saccharomyces cerevisiae Mannanase Rahim et al. (2022)
Peanut meal Lactobacillus plantarum Cellulase Wang et al. (2022)
Miscellaneous meal 
(maize gluten-wheat bran)

Lactic acid bacteria Acid protease Jiang et al. (2021)

Corn stalks Lactobacillus plantarum Cellulase Xu et al. (2020) 
Wang et al. (2022)

Sweet sorghum straw Prion-producing yeast, Aspergillus niger Xylanase, cellulase Yue et al. (2021)
Pleurotus eryngii  
mushroom bran

Bacillus subtilis, 
Pediococcus

Cellulase Zhang et al. (2024)

Mushroom bran Lactobacillus plantarum, 
Lactobacillus acidophilus, Lactobacillus 
buchneri,Prion-producing yeast, Aspergillus niger

Cellulase, xylanase Wang et al. (2022)

Tea residue Lactobacillus plantarum, Bacillus subtilis,  
Saccharomyces cerevisiae

Cellulase, xylanase, β-glucanase, β- 
mannanase

Wu et al. (2022)

Potato residue Lactobacillus plantarum Cellulase Xu et al. (2020)
Corn protein powder Bacillus subtilis Proteases Fan et al. (2023)
Maize cob Lactobacillus fermentum, Saccharomyces cerevisiae, 

Bacillus subtilis
Xylanase, β-glucanase, mannanase, 
cellulase, pectinase

Lin et al. (2021)

Wine lees bran mixture Lactobacillus plantarum, Bacillus subtilis,  
Saccharomyces cerevisiae

Cellulase, xylanase Zheng et al. (2023)

Bran Bacillus subtilis, 
Lactobacillus plantarum

Cellulase Wang et al. (2023) 
Wang et al. (2022)
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Benefits of enzyme-enhanced 
microbial fermentation of animal feed

Improved feed nutritional value 
Microbialfermented feed with hydrolysing en-

zyme supplementation has attracted significant at-
tention from livestock producers due to its multiple 
benefits. During this process, microorganisms syn-
thesise various compounds, including essential vi-
tamins and amino acids, which support the growth 
and development of livestock and poultry. This 
technique also enhances the nutritional quality of 
the feed, enabling better absorption and utilisation 
of nutrients, thereby promoting overall growth and 
health. Li et al. (2020) found that B. sphaericus pro-
duced cellulase during fermentation, which broke 
down cellulose, a major component of the cell wall. 
This enzymatic process enhanced nutrient digestion 
and improved nutrient utilization in animals. Simi-
larly, Li et al. (2018) showed that the combination 
of Aspergillus riparius fermentation with added 
fibrolytic enzymes improved lignocellulose deg-
radation, while inclusion of Enterococcus faecalis 
significantly improved conversion efficiency, short-
ened fermentation time, and increased glucose and 
total reducing sugar content in the silage. Moreover, 
He et al. (2018) demonstrated that inoculating silage 
with lactic acid bacteria and adding cellulase sig-
nificantly reduced condensed tannin content in the 
silage. This two-stage process of bacterial fermenta-
tion with subsequent enzyme treatment also gener-
ates a range of secondary metabolites. These include 
phenylpropanoids, terpenoids, steroids and alka-
loids, which play important roles in plant growth 
and development, defence mechanisms, nutritional 
quality enhancement, and environmental adaptabil-
ity. Beyond their roles in plants, these metabolites 
also provide significant benefits for human health 
and environmental protection (Zhao et al., 2024; 
Chen et al., 2024).

Improved feed palatability 
The use of bacterial fermentation with enzyme 

supplementation has proven effective in degrading 
anti-nutritional factors and deleterious compounds 
in feed while improving palatability (bitter taste 
removal), which directly increases feed intake and 
feed conversion efficiency. Research by Cheng et al. 
(2019) demonstrated that fermented feed signifi-
cantly reduced anti-nutritional factors in soybean 
meal, resulting in decreased expression of genes 
related to allergic inflammation, as well as lower 

serum IgG anti-soybean allergen levels in broiler 
chickens. Mukherjee et al. (2016) found that bacte-
rial fermentation of soybean meal increased nutrient 
content, including free amino acids, small peptides, 
and unrefined proteins while successfully degrading 
anti-nutritional factors such as phytates, soybean 
trypsin inhibitors and oligosaccharides. Chuang 
et al. (2019) used yeast fermentation and phytic acid 
enzyme treatment in gluten feed, which effectively 
solved the problem of negative impact of phytic acid 
on nutrient absorption by animals and improved the 
digestibility of key amino acids such as lysine, me-
thionine, cysteine, and threonine.

Enhanced livestock immunity 
Beneficial microorganisms in enzyme-enhanced 

fermented feed produce health-promoting com-
pounds that improve animal immunity. When these 
probiotics colonise the gut of livestock and poultry, 
they competitively inhibit the development of harm-
ful bacteria and restore microbial balance, strength-
ening immunity and lowering disease incidence. Re-
search has confirmed that the addition of cellulase to 
animal feed significantly reduces pathogenic E. coli 
population, simultaneously promoting the growth 
of Lactobacillus. This helps to effectively mitigate 
gut-related illnesses and lower the incidence of di-
arrhoea (Long et al., 2020). Furthermore, Su et al. 
(2018) demonstrated that the combined application 
of protease and probiotics in soybean meal fermen-
tation significantly improved bacterial viability, ac-
celerated protein degradation, and increased lactic 
acid production. In addition, this treatment reduced 
pH and sugar levels, while demonstrating antibac-
terial properties against Staphylococcus aureus and 
E. coli. Similarly, Zhang et al. (2017) reported that 
piglets fed fermented soybean meal had a consid-
erably higher average daily weight gain and feed 
intake compared to those on antibiotic-based diets. 
Additionally, the study observed lower mRNA lev-
els of pro-inflammatory markers in the jejunum and 
ileum of piglets consuming the fermented soybean 
meal, implying that the combined action of bacterial 
fermentation and enzyme supplementation could 
reduce intestinal inflammation while improving 
growth performance. 

Improved livestock and poultry production 
performance 

The use of enzyme-assisted microbialfermented 
feed significantly improves livestock and poultry 
performance, such as weight gain and laying rates. 
The improvement is a result of increased nutrient 
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solubility in fermented feed, facilitating their easier 
utilisation by the animals. Additionally, beneficial 
bacteria in the feed contribute to improved diges-
tive and metabolic efficiency of animals. Jiang et al. 
(2020a) demonstrated this by fermenting maize pro-
tein meal with lactic acid bacteria and adding acid 
protease, which increased peptide content and an-
tioxidant properties. When fed to weaned calves, 
this enzyme-aided fermented feed improved growth 
and reduced oxidative stress. On the other hand, Jazi 
et al. (2017) observed that feed fermented by bac-
teria with enzyme addition significantly enhanced 
broiler growth while promoting the development 
of beneficial gut microbiota and improving intesti-
nal structure. Similarly, Boroojeni et al. (2017) re-
ported that enzyme-enhanced bacterial fermentation 
of pea-based feed increased its nutritional value, 
resulting in higher growth rates and improved ileal 
digestibility in broilers.

Increased feed protein sources
The combined process of bacterial fermentation 

with enzyme supplementation enhances the nutri-
tional quality of alternative feed materials through 
complementary biological actions. Beneficial mi-
croorganisms actively ferment feed substrates while 
added enzymes target specific nutrient breakdown, 
working together to degrade toxins and anti-nu-
tritional factors while improving palatability and 
protein availability. A study by Zhang et al. (2022) 
has demonstrated that this approach significantly 
improves the feeding value of unconventional feed-
stuffs, creating new possibilities for protein resource 
utilisation. The addition of protease-producing bac-
terial strains or exogenous protease preparations 
during the fermentation of cake meal feedstuffs 
decompose macromolecular proteins in raw mate-
rials into functional small peptides and amino ac-
ids, improving protein digestibility and creating  
a more balanced nutritional profile (Kim et al., 2019).  
Boroojeni et al. (2018) demonstrated that the fer-
mentation of low-quality single protein feeds using 
B. subtilis, supplemented with pectinase and pro-
tease enzymes, resulted in balanced amino acid ra-
tios in the final feed product. 

Enzyme-bacteria antagonistic effects during 
feed fermentation 

Certain combinations of bacteria and enzymes 
may exhibit antagonistic interactions. For instance, 
Lactobacillus may conflict with certain proteases, 
yeast with some lipases, and bacteria like Bacillus 
with specific cellulases. These antagonistic effects 
may stem from differing optimal conditions for 

bacteria during aerobic fermentation, macromolecule 
breakdown in anaerobic fermentation, competition 
for nutrients in fermentation substrates, or 
suboptimal conditions during initial enzymatic 
hydrolysis (van Schie et al., 2021). Despite 
these challenges, the combined use of bacteria 
and enzymes in feed fermentation can achieve 
significant benefits, including 40–60% reduction 
of anti-nutritional factors, 25–35% improvement 
in protein digestibility, and enhanced palatability 
through metabolite production. Standardised 
evaluation methods have been developed to 
assess key performance indicators such as toxin 
degradation efficiency, nutrient retention rates, and 
microbial/enzyme activity profiles (Leelasuphakul 
et al., 2006).

Application of enzyme-enhanced 
bacterial fermented feed in livestock 
and poultry production

Enzyme-enhanced bacterial fermented feed 
in poultry production

Research demonstrates that feed fermented by 
bacteria with enzyme supplementation significantly 
improves intestinal health, growth performance, 
and immune function in poultry. Boroojeni et al. 
(2017) found that bacterial fermentation of pea-
based feed enhanced by enzymatic hydrolysis 
substantially increased its nutritional value. When 
incorporated into broiler diets, this fermented 
feed improved growth rates and ileal nutrient 
digestibility. Chuang et al. (2019) reported that 
the addition of brewer’s yeast-fermented bran 
supplemented with phytase in broiler diets reduced 
ileal Clostridium perfringens populations while 
downregulating key pro-inflammatory markers 
(interleukin-1 beta, inducible nitric-oxide synthase, 
interferon-γ) in peripheral blood mononuclear 
cells. Li et al. (2022) investigated the effects of 
microbial fermentation, enzymatic digestion, and 
a combined bacterial fermentation with enzyme 
supplementation of rapeseed meal in yellow-
feathered broiler diets. Their results showed that 
the integrated approach of bacterial fermentation 
followed by enzymatic treatment improved the 
antioxidant function and production performance 
of the broilers. The findings indicate that while 
standalone fermentation or enzymatic digestion 
each have limitations in feed processing, their 
combined application creates synergistic benefits 
for nutritional value.
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Enzyme-enhanced bacterial fermented feed 
in swine production

The combined use of bacterial fermentation and 
enzyme supplementation enhances piglet feed through 
complementary mechanisms. Bacterial fermentation 
helps stabilise intestinal microbiota and reduces di-
arrhoea incidence, while enzyme treatment improves 
nutrient digestibility and absorption. This integrated 
approach leads to better growth performance and im-
mune function in piglets. Long et al. (2021) showed 
that supplementing weaned piglet diets with multiple 
enzymes, including protease and xylanase, improved 
intestinal morphology by increasing the ileal villus 
to crypt ratio, and promoting nutrient digestion and 
absorption. Zhu et al. (2018) observed that incorpo-
rating fermented soybean meal to the diets of weaned 
piglets significantly improved their intestinal micro-
ecological environment by reducing E. coli and co-
lonic bacteria populations, while effectively enhanc-
ing immune function and overall health. Huang et al. 
(2019) showed that probiotic-fermented feed com-
bined with mycotoxin-degrading enzymes protected 
intestinal integrity by increasing porcine jejunal epi-
thelial cell viability, mitigating mycotoxin damage, 
and upregulating tight junction proteins and B-cell 
lymphoma-2 (Bcl-2) expression to prevent epithelial 
apoptosis. Liu et al. (2024) found that mycobacterial 
enzymes and fermented herbal compounds in piglet 
diets improved growth performance, enhanced im-
mune and antioxidant capacity, and elevated serum 
growth hormone levels.

Enzyme-enhanced bacterial fermented feed 
in cattle production

The inclusion of bacterial fermentation with 
enzyme supplementation in cattle diets improves 
growth performance, meat quality, and nutrient di-
gestibility, and plays a positive role in regulating ru-
men fermentation parameters and immune proper-
ties. Kim et al. (2018) reported that fermented total 
mixed rations (FTMR) significantly increased dry 
matter intake in Korean beef cattle while reducing 
blood albumin and lactate dehydrogenase levels, 
which indicated improved metabolic efficiency and 
disease resistance. Similarly, Hu et al. (2020) showed 
that replacing fresh maize stover with probiotic-en-
zyme fermented material substantially modified the 
structure of the rumen flora in beef cattle. This ap-
proach significantly increased the abundance of bac-
terial groups and elevated metabolite concentrations 
related to amino acids, carbohydrates, cofactors and 
vitamin metabolism in the rumen, improving feed 
energy conversion efficiency.

Enzyme-enhanced bacterial fermented feed 
in sheep production

Supplementing sheep diets with bacterial-fer-
mented feed preparations enriched with exogenous 
enzymes improves growth performance, meat qual-
ity, serum antioxidant function, and the appar-
ent digestibility of nutrients. Alsersy et al. (2015) 
demonstrated that enzyme-treated quinoa silage 
reduced neutral detergent fibre and acid detergent 
fibre content while increasing total digestible nutri-
ent intake due to improved digestibility and rumen 
fermentation in sheep. Jiang et al. (2020a) showed 
that bacterial-enzyme treatment of buckwheat straw 
significantly enhanced feed conversion efficiency in 
Tan sheep by promoting cellulose-degrading bac-
terial populations and upregulating related meta-
bolic genes. Further research by Jiang et al. (2021) 
showed that combining enzyme- and bacteria-treat-
ed buckwheat straw with alfalfa hay in Tan sheep 
diets increased average daily weight gain, lowered 
feed conversion ratios, and improved multiple car-
cass characteristics, including slaughter rate, lean 
meat yield, and meat colour quality.

Conclusions 
Enzyme-enhanced bacterial fermented feed of-

fers significant advantages for livestock and poultry 
production, including enhanced nutritional value, 
immunity, and production performance. It also 
contributes to reducing environmental impact, im-
proving feed palatability, and expanding protein 
resources. As a result, it holds significant potential 
for widespread application in livestock and poultry 
farming.
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