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Introduction

Broiler production is rapidly expanding to meet 
the increasing global demand for affordable and high-
quality animal protein. However, intensive farming 
systems with high animal densities is likely to result 
in elevated stress levels and a higher incidence of in-
fectious diseases, adversely affecting broilers’ health 
(Clark et al., 2019; Bajagai et al., 2022). Therefore, 
it is essential to develop effective and natural addi-
tives to improve chickens’ health and optimise out-
put in intensive poultry production systems. Various 

feed additives such as probiotics, oligosaccharides, 
organic acids, enzymes, and phytogenics have been 
utilised to enhance poultry well-being and perfor-
mance (Gadde et al., 2017; Salim et al., 2018; Abd 
El-Hack et  al., 2022). Chinese herbal medicines 
have been demonstrated as efficient feed additives 
for improving poultry health and performance due 
to their potent therapeutic properties and lack of ad-
verse side effects. Specifically, they have positively 
affected immune system function, intestinal health, 
antioxidant capacity as well as anti-inflammatory 
status in animals (Wang et al., 2021; Wu et al., 2023).

ABSTRACT. The objective of this study was to characterise the effects of sup-
plementation with Angelica sinensis Radix (ASR) powder and a preparation con-
taining ASR powder (Danggui Buxue Decoction, DBD) on growth performance, 
antioxidant capacity, immune activity, and caecal bacterial microbiota in broiler 
chickens. A total of 180 one-day-old male Luhua broiler chickens were randomly 
assigned to three groups. Broiler chickens in the control group were fed a basal 
diet, the ASR group was administered a basal diet supplemented with 1% ASR 
powder, and the DBD group received a basal diet supplemented with 1% DBD 
powder. Results showed significant increases in serum glutathione peroxidase 
and catalase activities, as well as serum immunoglobulin A levels in both the 
ASR and DBD groups compared to the control group (P < 0.05). Additionally, 
the malondialdehyde content was significantly lower in the ASR group com-
pared to other groups (P < 0.05). Supplementation with ASR and DBD also had 
notable effects on the composition of broiler intestinal microbiota, particularly 
influencing the abundance of Firmicutes and Bacteroidetes, as demonstrated by 
high-throughput sequencing analysis. These findings suggest that dietary ASR 
and DBD supplementation enhanced antioxidant capacity, immune status, and 
intestinal flora diversity in broiler chickens, indicating their potential as effective 
phytogenic feed additives.

Received: 7 April  2024
Revised: 20 May  2024
Accepted:	 22 May  2024

* Corresponding author:  
e-mail: zhiye_wang@sina.com

mailto:zhiye_wang@sina.com


J. Song et al.	 505

Angelica sinensis Radix (ASR) is the rhizome 
of Angelica sinensis (Oliv.) Diels, a  perennial her-
baceous plant belonging to the family Umbelliferae 
(Wei et al., 2016). Many scientists have investigated 
the biological characteristics of ASR, and their find-
ings have demonstrated its antioxidant, immuno-
modulatory, hepatoprotective, and anti-inflammatory 
effects of this product (Chen et al., 2013b; Ma et al., 
2015; Gu et  al., 2019). The primary bioactive con-
stituents of ASR include polysaccharides, organic 
acids, coumarins, flavonoids, and phthalides. Dang-
gui Buxue Decoction (DBD), which consists of ASR 
and Astragalus membranaceus in a  weight ratio of 
1:5, is one of the best-known preparations derived 
from ASR. DBD is a  traditional Chinese medicine 
prescription used to increase energy metabolism and 
stimulate circulation. Recent pharmacological studies 
have revealed that DBD exerts various pharmacolog-
ical effects, including modulating immune function, 
increasing antioxidant activity, improving physical 
performance, influencing lymphocyte activity, pro-
moting haematopoiesis and anti-inflammatory effects 
(Chang et al., 2020; Li et al., 2021). 

Studies on the effects of ASR and its formu-
lations have primarily focused on characterising 
its pro-angiogenic activity (Chen et  al., 2022) and 
hepatoprotective effects (Wu et al., 2022a), as well 
as its potential for cancer adjuvant therapy in both 
humans and animals (Zhou, 2011). However, lim-
ited research has been conducted to evaluate the 
impact of ASR supplementation and its formula-
tions on broiler chickens, including their influence 
on the regulation of intestinal microflora (Li et al., 
2013). The composition of the intestinal microbial 
community, immune performance, and antioxidant 
capacity all play crucial roles in the growth of broil-
er chickens. In this study, we aimed to investigate 
the effects of dietary administration of ASR and its 
formulation on growth performance, antioxidant 
capacity, immune response, and ceacal microbiota 
composition in broiler chickens. The findings of our 
study will contribute to a  better understanding of 
how ASR and DBD supplementation can improve 
broiler chicken production by elucidating the under-
lying mechanisms of their action. These insights can 
be utilised to optimise the effectiveness of ASR and 
DBD supplementation in poultry farming.

Material and methods
Experimental design and diets

Experimental procedures employed in this 
study were approved by the Animal Care and Use 

Committee of the Lanzhou University of Technology 
(LUT-2022-003). A  total of 180  one-day-old male 
Luhua chickens (Gallus gallus domesticus) with 
comparable body weights were obtained from 
Lanzhou Zhengda Food Co., Ltd (Lanzhou, GS, 
China). Chickens were randomly allocated to three 
dietary groups, each consisting of 6  replicates 
with 10  broilers per replicate. The starter period 
encompassed days 1 to 21, while the finisher period 
covered days  22 to 42 of the chickens’ lives. The 
three dietary treatments included control animals 
fed a  basal diet (CK group), broilers fed a  basal 
diet supplemented with 1% Angelica sinensis Radix 
powder (ASR group), and chickens administered 
a basal diet supplemented with 1% Danggui Buxue 
Decoction powder (DBD group). Both Chinese herb 
feed additives were pulverised and sieved through 
an 80 mm mesh to obtain fine powder, which was 
subsequently mixed and directly added to the 
basal diet. The broilers were housed in floor pens 
(100 cm × 150 cm × 60 cm) in an environmentally 
controlled room. The room temperature was 
maintained at 34 ℃ for 4 days and then gradually 
decreased by 1  ℃ every 2  days until it reached 
24  ℃. Throughout the experimental period, all 
broilers had unrestricted access to feed and clean 
water. Additionally, they were inoculated with the 
Newcastle disease vaccine and infectious bronchitis 
vaccine on days  7 and 21, respectively. The 
experimental diets were administered for a  period 
of 42 days. Angelica sinensis Radix and Astragalus 
membranaceus (AM) were purchased from Minxian 
Huimin Pharmaceutical Co., Ltd (GS, China). The 
nutritional composition of the ASR and DBD is 
detailed in Table 1. The total polysaccharide contents 
of ASR and DBD were determined using ultraviolet 
spectrophotometry and the phenol-sulphuric acid 
method, and they amounted to 12.78% and 20.41%, 
respectively. In addition, the flavonoid content of 
ASR and DBD was determined at approximately 
0.17% and 0.08%, respectively, using the aluminium 
chloride colorimetric assay with rutin as a standard, 

Table 1. Nutritional composition of Angelica sinensis Radix (ASR) and 
Danggui Buxue Decoction (DBD) powders

Composition, % ASR DBD
Dry matter 91.04 93.44
Crude protein 18.77 17.02
Crude fat   1.33   0.57
Crude fibre   5.76 19.07
Crude ash   5.67   3.00
Calcium   0.28   0.15
Phosphorus   0.41   0.30
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following Soares’ methodology (Soares et  al., 
2015). The basal diet was purchased from Beijing 
Keao Xieli Feed Co., Ltd (Beijing, China), and 
its composition and nutritional levels are listed in 
Table 2.

Growth performance
Body weight (BW) and feed intake were record-

ed on days 1, 21, and 42, following a 12-h period 
of feed withdrawal. Average daily gain (ADG) was 
calculated using the formula: (BWd − BW1) / day × 
100%, and average daily feed intake (ADFI) was 
calculated using the following equation: (total feed 
weight − total residual feed weight) / day × 100%, 
and feed conversion ratio (FCR) was calculated ac-
cording to ADG and ADFI.

Sample collection
On day  42 of the experiment, one broiler 

with a  body weight close to the average was 
selected from each replicate. Blood samples were 
collected from pterygoid veins using vacuum 
blood collection tubes without anticoagulant, and 
subsequently centrifuged at 3000 g for 10  min 
at 4  ℃ to obtain serum. The separated serum 
was stored at −20  ℃ for biochemical analysis. 
After blood sample collection, the broilers were 
slaughtered by bleeding through the left jugular 
vein, and caecal content samples were collected in 
sterile 2 ml DNA- and RNA-free centrifuge tubes 
and stored at −80 ℃.

Measurements of antioxidant indices
Serum levels of total antioxidant capacity 

(TAC), malondialdehyde (MDA), and superoxide 
dismutase (SOD), catalase (CAT), and glutathione 
peroxidase (GSH-Px) activities were quantified us-
ing commercially available kits from Jiancheng 
Bioengineering Institute, Nanjing, China; the as-
says used included A015-2-1 for TAC, A003-1-2 
for MDA, A001-3 for SOD, A007-1-1 for CAT, and 
A005-1-2 for GSH-Px. All measurements were per-
formed following the manufacturer’s instructions.

Measurements of serum cytokine and 
immunoglobulin concentrations

The levels of IgG, IgM, IgA, interleukin 2 
(IL-2), interleukin 6 (IL-6) and tumour necro-
sis factor-α (TNF-α) in the serum were quanti-
fied using appropriate ELISA kits (H106-1-2,  
H109-1-2, H108-1-2, H003-1-1, H007-1-2 and 
H023-1-1, respectively) following the manufac-
turer’s instructions (Jiancheng Bioengineering In-
stitute, Nanjing, JS, China).

Faecal DNA extraction and 16S rRNA 
sequencing

Microbial DNA was extracted using the 
QIAamp DNA Stool Mini Kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s 
protocol. The V3-V4 hypervariable region of the 
bacterial 16S  rRNA gene was amplified from 
genomic DNA template using the following 
primers: 338F (ACTCCTACGGGAGGCAGCA) 
and 806R (GGACTACHVGGGTWTCTAAT). 
Amplification products were purified using 
Agencourt AMPure XP Beads (Beckman Coulter 
Genomics, Danvers, MA, USA) according to 
the manufacturer’s instructions, and quantified 
using a  Qubit quantification system (Thermo 
Scientific, Wilmington, DE, USA). Amplicons were 
sequenced using an Illumina NovaSeq 6000 system 
by Biomarker Technologies Corporation (Beijing, 
China). Operational taxonomic units (OTUs) were 
clustered using UPARSE version  10. Each OTU 
sequence was compared against the Greengenes2 
database (2022.10. https://docs.qiime2.org/2023.9/
data-resources/) for classification at the phylum, 
class, order, family, genus, and/or species levels. 
Column accumulation diagrams displaying the 
relative abundances of individual species were 
generated based on the top 10 most abundant phyla 
and genera. Alpha and beta diversity indices were 
evaluated using QIIME2 software, while differential 
analysis of alpha diversity indices between groups 

Table 2. Ingredient composition and nutrient analysis of the basal diet

Ingredients Starter  
(days 0–21)

Finisher  
(days 21–42)

Corn 58.12 61.75
Soybean meal 29.15 26.45
Fish meal   5.00   3.51
Soybean oil   2.00   3.00
Premix1   5.00   5.00
Dicalcium phosphorus   0.47   0.29
Limestone   0.26   0.00
Calculated nutrient

metabolizable energy, MJ/kg 12.02 12.49
crude protein 21.00 17.50
calcium   1.00   0.85
total phosphate   0.68   0.65
available phosphorus   0.50   0.42
lys   1.20   1.00
met   0.46   0.32

1 provided per kg of diet: IU: vit. A 9875, vit. D3 3000, vit. E 20, vit. K 3.25; 
mg: vit. B12 0.025, vit. B1 1.5, vit. B2 5.0, vit. B6 3.75, vit. H 0.032, 
folacin 1.25, niacin 12, pantothenic acid 12, manganese (Mn) 100, zinc 
(Zn) 80, iron (Fe) 80, copper (Cu) 8, iodine (I) 0.15, selenium (Se) 0.15

https://docs.qiime2.org/2023.9/data-resources/
https://docs.qiime2.org/2023.9/data-resources/
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was performed using one-way ANOVA. Principal 
component analysis (PCA) and principal coordinate 
analysis (PCoA) plots were constructed using the 
R  language toolset. Analyses of linear discriminant 
analysis effect size (LEfSe) with LDA log-score 
threshold set at 4.0 were conducted utilising the 
LEfSe tool to identify significant differences in 
microbiota composition between the groups at various 
taxonomic levels. Metagenomes and functional 
profiles of intestinal microbiota were analysed using 
PICRUSt2 software, whereas STAMP software was 
employed to identify differences in KEGG pathways 
between the groups. The significance of the difference 
in functional abundance between the groups was 
assessed using one-way ANOVA. Predictions of the 
intestinal microbiome phenotype were generated 
using the BugBase tool.

Data availability
The raw sequence data are publicly available 

through the BioProject Accession Number PRJ-
NA1079044 at The National Center for Biotechnol-
ogy Information (NCBI) Sequence Read Archive 
(SRA) database at https://www.ncbi.nlm.nih.gov/sra.

Statistical analysis
The data were analysed using one-way analysis 

of variance (ANOVA) implemented in SPSS statis-
tical software (version 26.0; SPSS Inc., Chicago, 
IL, USA). The pen was defined as the experimen-
tal unit. Differences between means were compared 
using Tukey’s multiple range test at a  significance 
level of P < 0.05. All results are reported as means 
and pooled standard error of the means.

Results

Effects of ASR and DBD on growth 
performance 

Growth performance, measured as ADG, ADFI, 
and FCR (Table 3), did not show any significant dif-
ferences between the dietary treatments (P  > 0.05) 
throughout the experimental period from 1 to 42 days 
of age. However, during the starter period from 
day  1 to 21, broilers supplemented with ASR and 
DBD demonstrated a significant increase in ADG by 
10.87% and 15.98%, respectively, compared to the 
control group (P < 0.05). Additionally, supplementa-
tion with both ASR and DBD resulted in an increase 
in ADFI by 4.04% and 5.04%, respectively, accom-
panied by a decrease in FCR by 6.31% and 9.47%, 
respectively, compared to the control group; how-
ever, only the DBD treatment resulted in statistically 

significant effects (P  < 0.05). No significant differ-
ences were observed for ADG, ADFI, or FCR among 
the three groups of broilers during the finisher period 
from day 22 to day 42.

Effects of ASR and DBD on serum 
antioxidant activity

Table 4 presents the effects of dietary supplemen-
tation with ASR and DBD on serum activity of SOD, 
CAT, and GSH-Px, as well as serum levels of TAC, 
and MDA in broiler chicks. No statistically signifi-
cant differences were observed in serum activity of 
SOD, or MDA and TAC levels between the groups 

Table 3. Effects of dietary supplementation with Angelica sinensis 
Radix (ASR) and Danggui Buxue Decoction (DBD) powders on growth 
performance of broiler chickens

Items Control ASR DBD SEM P-values
BW, g

day  1     39.16     40.33     39.67     1.97 0.827
day 21   381.00a   419.33b   436.00b   10.55 0.000
day 42 2303.00 2551.50 2344.16 130.90 0.173

ADG, g/bird/day
days 1 to 21     16.27a     18.04b     18.87b     0.51 0.000
days 22 to 42     91.52   101.53     90.86     6.19 0.230
days 1 to 42     53.90     59.78     54.86     3.11 0.176

ADFI, g/bird/D
days 1 to 21     30.93     32.18     32.49     0.60 0.050
days 22 to 42   164.86   168.92   166.27     2.14 0.175
days 1 to 42     97.90a   100.56b     99.38ab     1.01 0.058

FCR, g/g
days 1 to 21       1.90a       1.78ab       1.72b     0.06 0.030
days 22 to 42       1.84       1.66       1.85     0.12 0.299
days 1 to 42       1.84       1.68       1.82     0.10 0.276

control  – broilers fed a  basal diet, ASR  – broilers fed a  basal 
diet supplemented with 1% ASR, DBD  – broilers fed a  basal diet 
supplemented with 1% DBD. BW – body weight, ADG – average daily 
gain, ADFI – average daily feed intake, FCR – equal to ADFI/ADG,  
SEM – standard error of the mean, n = 6; ab – means within a row with 
no common superscript are significantly different at P < 0.05

Table 4. Effects of dietary supplementation with Angelica sinensis 
Radix (ASR) and Danggui Buxue Decoction (DBD) powders on the 
antioxidant status of broiler chickens

Items Control ASR DBD SEM P-values
SOD, U/ml   91.01   87.86   96.57   6.70 0.417
GSH-Px, U/l 365.42a 434.11ab 453.51b 27.92 0.016
CAT, U/ml   41.26a   53.72b   52.57b   2.47 0.000
TAC, U/ml     1.22     1.37     1.25   0.12 0.508
MDA, nmol/l   11.43     9.03     9.46   1.08 0.104
control  – broilers fed a  basal diet, ASR  – broilers fed a  basal 
diet supplemented with 1% ASR, DBD  – broilers fed a  basal 
diet supplemented with 1% DBD; SOD  – superoxide dismutase,  
GSH-Px  – glutathione peroxidase, CAT  – catalase, TAC  – total 
antioxidant capacity, MDA – malondialdehyde, SEM – standard error 
of the mean, n  = 6; ab  – means within the same row with different 
superscripts are significantly different (P < 0.05)

https://www.ncbi.nlm.nih.gov/sra
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(P > 0.05). However, compared to the control group, 
dietary supplementation with 1% ASR and 1% DBD 
significantly increased (P < 0.05) serum GSH-Px ac-
tivity by 18.79% and 24.10%, respectively. Serum 
CAT activity in broilers fed diets containing 1% ASR 
and 1% DBD showed a significant increase (P < 0.05) 
by 30.19% and 27.41%, respectively, compared to 
those fed the control diet. In conclusion, our findings 
suggest that both additives ASR and DBD improved 
the antioxidant capacity in broiler chickens.

Effects of ASR and DBD on serum immune 
function

The effects of dietary ASR and DBD supple-
mentation on the serum levels of IgM, IgG, IgA,  
IL-2, IL-6, and TNF-α in broiler chickens are 
presented in Table  5. Compared to the control 
group, the addition of ASR and DBD significantly 
increased serum IgA levels in broilers (P  < 0.05). 
However, no significant differences (P > 0.05) were 
observed for the other measured immune parameters 
(IgM, IgG, IL-2, IL-6, TNF-α) between the three 
groups of the experimental broilers. These findings 
demonstrate that the administration of ASR and 
DBD in the diet positively influenced the immune 
capacity of broilers. 

Table 5. Effects of dietary supplementation with Angelica sinensis 
Radix (ASR) and Danggui Buxue Decoction (DBD) powders on the 
immune function of broiler chickens

Items control ASR DBD SEM P-values
IgM, ng/ml 3717.88 4097.80 4003.68 356.37 0.549
IgG, μg/ml     79.34     85.47     78.52     5.92 0.486
IgA, ng/ml 7203.50a 8859.46b 8776.41b 515.07 0.009
IL-2, ng/l   182.81   188.24   157.27   12.27 0.057
IL-6, ng/l     34.73     35.31     32.00     4.45 0.743
TNF-α, ng/l     79.77     76.34     76.46     4.37 0.717
control  – broilers fed a  basal diet, ASR  – broilers fed a  basal 
diet supplemented with 1% ASR, DBD  – broilers fed a  basal 
diet supplemented with 1% DBD, IgM  – immunoglobulin  M,  
IgG – immunoglobulin G, IgA – immunoglobulin A, IL-2 – interleukin 2, 
IL-6 – interleukin 6, TNF-α – tumour necrosis factor-α, SEM – standard 
error of the mean, n = 6; ab – means within the same row with different 
superscripts are significantly different (P < 0.05)

Effects of ASR and DBD on caecal 
microbiota diversity and structure in 
broilers

The intestinal microbiota is closely associated 
with the health and production performance of 
broiler chickens. Therefore, we analysed the caecal 
microbiota of chickens fed ASR and DBD using 
high-throughput 16S  rRNA gene sequencing. This 
approach produced a  total of 1436261 clean reads 
from 18  caecal samples in three groups. After 

denoising, removing chimeras, and filtering low-
quality sequences, each sample contained an average 
of 48212 sequences. These sequences were further 
classified into 1431 operational taxonomic units 
(OTUs) based on a 97% identity threshold. Richness 
and diversity analyses of the caecal microbiota 
in the three groups are presented in Figure  1. The 
Chao1 index and rank abundance curve showed 
significantly higher values in both the ASR and DBD 
groups compared to control animals. Conversely, 
the Shannon diversity index assumed significantly 
lower values in the ASR group and DBD group, 
indicating that supplementation with ASR and DBD 
could increase microbial counts, while reducing its 
diversity in the intestines.

To further verify differences in species com-
position between samples from individual groups, 
principal component analysis (PCA) based on the 
EUCLIDEAN distance, and principal coordinate 
analysis (PCoA) based on the Bray-Curtis distance, 
were used to analyse beta diversity between the cae-
cal microbiota of broilers fed the control diet or diets 
supplemented with ASR and its formulation. The cae-
cal microbiota formed distinct, separated clusters in 
the three groups. Principal components PC1 and PC2 
accounted for 87.49% and 5.94% of the variation, re-
spectively (Figure 1D). The differences in the com-
position of the caecal microbiota community between 
the ASR and DBD groups were minor; however, they 
were more pronounced when compared to the control 
group. This finding suggested that the caecal micro-
biota differed significantly between the three groups 
and that supplementation with ASR and DBD could 
alter the microbial composition of the caecum of 
broiler chickens.

To identify the alterations in the broiler gut 
microbial communities induced by ASR and DBD, 
a  comprehensive analysis of bacterial taxonomy 
was conducted at both the phylum and genus levels  
(Figure 2). The dietary intervention with ASR and 
DBD resulted in significant changes in the com-
position of the caecal microbiota. At the phylum 
level, Firmicutes emerged as the dominant group, 
followed by Bacteroidota, Desulfobacterota, and 
Proteobacteria. In comparison to the control group, 
there was an increase in the relative abundance of 
Bacteroidota and Desulfobacterota, while the num-
ber of Firmicutes and Proteobacteria showed a de-
crease in the caecal microbiota in the ASR and DBD 
groups. Regarding the genus level, Bacteroides,  
unclassified Oscillospiraceae, Alistipes, and un-
classified Lachnospiraceae were identified as dom-
inant taxonomic units in the broiler chicken caecal 
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Figure 1. Differences in the diversity, richness, and structure of the bacterial community in the caecum of broilers fed with or without Angelica 
sinensis Radix (ASR) and Danggui Buxue Decoction (DBD) powders. α diversity analysis of caecal microbiota in chicken. (A) Chao1 index,  
(B) ACE index, (C) Rank Abundance Curve (D) Principal components analysis (PCA) of the bacterial community structure in the CK, ASR and 
DBD group. Each symbol represents individual gut microbiota. (E) PCoA analysis showed significantly separated clusters between the CK, ASR 
and DBD groups
CK – basal diet, ASR – basal diet supplemented with ASR, DBD – basal diet supplemented with DBD

Figure 2. Changes in the microbial composition in the caecum of broilers fed with or without Angelica sinensis Radix (ASR) and Danggui Buxue 
Decoction (DBD) powders. Microbial composition at the phylum and genus level; each bar represents the relative abundance of individual 
bacterial taxa in chickens’ intestines
CK – basal diet, ASR – basal diet supplemented with 1% ASR, DBD – basal diet supplemented with 1% DBD
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microbiota. It should be noted that compared to 
controls, there was an increase in the relative abun-
dance of Bacteroides, unclassified Oscillospira-
ceae, Christensenellaceae-R-7, and Desulfovibrio, 
whereas Alistipes, unclassified Ruminococcaceae, 
unclassified Clostridia-UCG-014, and Rumino-
coccus-torques showed decreased abundance in 
the caecal microbiota of both the ASR and DBD 
groups. Furthermore, the count of unclassified 
Lachnospiraceae was higher in the DBD group 

than that observed in the ASR or control groups. In 
contrast, the abundance of UCG-005 was higher in 
the ASR group compared to the DBD and control 
groups.

To directly observe the differential impact 
of ASR and DBD on the species composition of 
the caecal microbiota, we generated a  heatmap  
illustrating the distribution and similarity of 
bacterial abundance between individual groups  
(Figure 3). 

Figure 3. Significantly different bacterial taxa between the CK, Angelica sinensis Radix (ASR) and Danggui Buxue Decoction (DBD) group, 
showing taxonomic abundance using cluster heatmap at level of species. Colour gradient (blue to red) represents relative richness (low to high)
CK – basal diet, ASR – basal diet supplemented with 1% ASR, DBD – basal diet supplemented with 1% DBD
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Figure 4. Significantly different bacterial taxa between the CK, Angelica sinensis Radix (ASR) and Danggui Buxue Decoction (DBD) group 
identified by linear discriminant analysis coupled with effect size (LEfSe) using default parameters
CK – basal diet, ASR – basal diet supplemented with 1% ASR, DBD – basal diet supplemented with 1% DBD

To investigate the differences in the species 
composition of the gut microbiota in birds supple-
mented with ASR and DBD, a  linear discriminant 
analysis was conducted of the effect size (LEfSe) 
to identify species-specific biomarkers (LDA  
score > 4). The LEfSe analysis revealed significant 
differences in microbial communities across differ-
ent groups (Figure 4). The proportions of the genera 
Lactobacillus, unclassified Ruminococcaceae, Ligi-
lactobacillus, Parabacteroides, and Alistipes were 
found to be higher in the caecal microbiota of the 
control group. On the other hand, the relative abun 
dance of unclassified Oscillospiraceae, uncultured 

prokaryotes, and Barnesiella genera were higher in 
the caecal microbiota in the ASR group. Addition-
ally, the genera Bacteroides, Desulfovibrio, unclassi-
fied Lachnospiraceae, and Christensenellaceae-R-7 
were more abundant in the caecal microbiota of the 
DBD group.

The BugBase method provides organism-level 
predictions of biologically relevant microbiome 
phenotypes. Our analysis demonstrated that supple-
mentation with ASR and DBD increased the relative 
abundance of Gram-negative bacteria, while reduc-
ing the relative abundance of potentially pathogenic 
bacteria (Figure 5).

Figure 5. Prediction of 6 BugBase phenotypes: (A) Gram-positive, (B) Gram-negative, (C) potentially pathogenic, (D) aerobic, (E) anaerobic,  
(F) facultatively anaerobic
CK – basal diet, ASR – basal diet supplemented with 1% Angelica sinensis Radix, DBD – basal diet supplemented with 1% Danggui Buxue 
Decoction
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Discussion

In the present study, supplementation with ASR 
or its formulation did not have a  significant ef-
fect on growth performance parameters, including 
ADG, ADFI, and FCR, in the entire experimental 
period from 1 to 42 days of age. However, during 
the starter period from day 1 to day 21, broilers sup-
plemented with DBD showed significantly higher 
ADG and ADFI values, accompanied by a signifi-
cantly lower FCR compared to the other group. 
This improvement in growth performance during 
the starter period could be attributed to the presence 
of active metabolites in DBD, consistent with find-
ings of Tian et al. (2023). Wu (2018), on the other 
hand, demonstrated that supplementing a basal diet 
with AM polysaccharides increased body weight 
in juvenile broilers by enhancing digestive enzyme 
activities. Both ASR and AM contain biologically 
active substances such as polyphenols and organic 
acids that can improve feed flavour and palatabil-
ity, potentially contributing to improved growth 
performance during the starter period in broilers. It 
should be noted that DBD supplementation appears 
to benefit broiler chickens in the brood stage more 
than those in the rearing period, possibly due to the 
limited impact of low DBD concentrations on larger 
birds. Further studies are required to determine opti-
mal levels of DBD supplementation.

Reactive oxygen species (ROS) are generated 
by living organisms as a  result of normal cellular 
metabolic processes, and they play various physi-
ological functions, including immune defence and 
maintenance of cellular homeostasis. However, 
when ROS levels are excessive, the cellular antioxi-
dant defence system becomes insufficient to prevent 
their accumulation beyond acceptable limits. This 
can lead to damage to essential biomolecules within 
cells and disruption of the cellular redox balance, 
resulting in oxidative stress (Pisoschi et al., 2016). 
The latter state has been associated with metabolic 
disorders and organ degeneration, reduced meta-
bolic efficiency, and the development of diseases 
in animals (Bhattacharyya et al., 2014; Lauridsen, 
2019; Gulcin, 2020). Consumption of antioxidant 
substances has been shown to protect against dam-
age caused by oxidative stress. A growing body of 
research has suggested that Chinese herbal supple-
ments containing compounds such as flavonoids, 
polysaccharides, vitamin  D, and vitamin  C (Zhu 
et al., 2004; Chen et al., 2013a) exhibit potent an-
tioxidant activities that can alleviate oxidative 
stress in animals (Jin et al., 2013; Yan et al., 2014;  

Gu et al., 2020; Gao et al., 2021). ASR is abundant 
in bioactive compounds, such as polysaccharides, 
ligustilide, or ferulic acid, which have been demon-
strated to possess antioxidant properties (Wei et al., 
2016; Fan et  al., 2020; Nai et  al., 2021). In vitro 
studies have shown that polysaccharide extracts 
from ASR can effectively reduce the accumulation 
of oxidants, while increasing the activities of GSH, 
SOD, and CAT (Zhuang et  al., 2016; Du et  al., 
2023). Chang et al. (2020) reported that supplemen-
tation with DBD improved physical performance in 
swimming rats and mediated physiological adapta-
tions. Therefore, we analysed the activity of endog-
enous antioxidant enzymes SOD, GSH-Px, CAT, 
and TAC, as well as the lipid peroxidation indicator 
MDA in broilers to evaluate the effects of dietary 
supplementation with ASR and DBD on antioxi-
dant enzyme activities. In line with the results of Du 
et al. (2023), both ASR and DBD administration re-
sulted in increased GSH-Px and CAT activity levels 
along with decreased serum MDA concentrations in 
broiler chickens. These results indicated that dietary 
supplementation with ASR and DBD improved the 
antioxidant capacity of broiler chickens.

Immunoglobulins are the main secretory prod-
ucts of the adaptive immune system, and play pivotal 
roles in animal immune function (Wang et al., 2019). 
IgA, IgG, and IgM represent the primary immuno-
globulins synthesised by humoral immune cells in 
immune organs and tissues, serving as crucial indi-
cators for assessing the health status of this system 
(Carsetti et al., 2004). IgA is indispensable for main-
taining mucosal homeostasis, providing protection 
against antigens, and acting as an anti-inflammatory 
agent in the respiratory and gastrointestinal tracts  
(Mkaddem et al., 2014; Breedveld and van Egmond, 
2019). Secretory IgA primarily regulates mucosal 
immunity by binding to pathogens to prevent their 
access to epithelial cells or by binding to specific 
receptors that subsequently trigger downstream im-
mune responses such as cytokine release (Mantis 
et  al., 2011). In the current study, supplementation 
with ASR and DBD significantly increased serum 
IgA levels in broilers. Pro- and anti-inflammatory cy-
tokines play key roles in immune responses, with the 
latter alleviating inflammation and facilitating heal-
ing processes, and the former exacerbating inflam-
matory damage. However, no significant differences 
were observed in inflammationrelated parameters 
when ASR or DBD was administered with a basal 
diet, possibly because the experiment was conducted 
under normal conditions with regular levels of in-
flammatory cytokine expression.
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The gut microbiota is a highly complex microbi-
al community in the intestines that directly impacts 
the physiology, health, and productivity of animals 
(Wei et al., 2013). A growing number of studies has 
demonstrated the crucial role of microbial metabo-
lism in nutrient digestion and absorption. Addition-
ally, it regulates appetite and behaviour via neuronal 
signalling pathways connecting the gut microbiota 
to the brain (Gilbert et al., 2018). Microorganisms 
can also modulate immune system development and 
homeostasis by affecting pathogen defence and in-
testinal epithelium maturation. Additionally, the gut 
microbiota contributes to the occurrence and pro-
gression of diseases (Fan and Pedersen, 2021). Of all 
the components of the gastrointestinal tract, the cae-
cum harbours a dense microbial population showing 
prolonged residence periods in this section of the 
broilers’ digestive system (Oladeinde et al., 2019). 
The development of caecal microbiota shows some 
degree of conservation in broiler chickens (Kers 
et al., 2022). In the present study, a high-throughput 
16S rRNA gene sequencing was employed to char-
acterise the composition of the caecal microbiota 
in broiler chickens fed ASR and DBD diets. Both 
ASR and DBD treatments resulted in significant 
increases in microbial community richness in the 
caecum. Firmicutes and Bacteroidetes were identi-
fied as the predominant phyla in the caecal micro-
biota, comprising over 90% of the total microbiota 
in 42-day-old chickens, and this observation was 
consistent with previous findings by Rychlik et al. 
(Han et al., 2023; Lin et al., 2023; Liu et al., 2023). 
However, our results suggested that both ASR and 
DBD supplementation led to an increase in the rela-
tive abundance of Bacteroidetes, while reducing the 
number of Firmicutes within the caecal microbiota 
compared to the control group. Members belong-
ing to Bacteroidetes are actively involved in poly-
saccharide fermentation and short-chain fatty acid 
(SCFA) production, which can contribute to animal 
health promotion. Additionally, Bacteroidetes have 
been shown to modulate host gut immune responses 
through the expression of secretory IgA (Cantarel 
et  al., 2012; Wang et  al., 2020). Our findings are 
in agreement with the results of a  previous study, 
which demonstrated that supplementation with 
Glycyrrhiza polysaccharides reduced the ratio of 
Firmicutes to Bacteroidetes (Wu et al., 2022b). The 
polysaccharides present in ASR and DBD optimise 
the composition and abundance of microorganisms 
in the intestinal microbiota, which is closely as-
sociated with intestinal morphology, nutrient me-
tabolism, and host health (Turnbaugh et al., 2006)

The present results indicated that ASR and DBD 
increased the relative abundance of phyla such as 
Bacteroidetes, Desulfobacterota, Actinobacteriota, 
Synergistota, Elusimicrobiota, and Cyanobacteria. 
Additionally, they also raised the relative abundance 
of such genera as Bacteroides, unclassified Oscillo-
spiraceae, Christensenellaceae-R-7, and Desulfovi-
brio. On the other hand, the relative abundance of 
phyla like Firmicutes, Proteobacteria, Campylobac-
terota, and Verrucomicrobiota decreased as a result 
of ASR and DBD treatment, alongside genera Alis-
tipes, unclassified Ruminococcaceae, unclassified-
Clostridia-UCG -014 and Rominococcus-torques in 
the caecal microbiota of broiler chickens. The rela-
tive abundance of the unclassified genus Lachno-
spiraceae was higher in the DBD group compared 
to other groups, while the genus UCG005 showed  
a higher relative abundance in the ASR group than 
in the remaining groups.

Bacteria of the genus Oscillospira have rarely 
been successfully cultured, but are commonly found 
in the gastrointestinal tract of healthy animals, in-
cluding humans. This genus is believed to play a cru-
cial role in maintaining the stability of the microbial 
community and promoting host health (Chen et al., 
2020). The analysis of gut microbiome sequencing 
data revealed that Oscillospira constituted a  sub-
stantial proportion of the human gut microbiome, 
and a  strong correlation was shown between the 
abundance of Oscillospira and host health. The ge-
nus Christensenellaceae is commonly found in the 
gut microbiota of both animals and humans. Several 
studies have demonstrated that Christensenellaceae 
exhibits high heritability and is associated with hu-
man longevity and metabolic health (Kong et  al., 
2016; Waters and Ley, 2019). Proteobacteria have 
been frequently observed following antibiotic treat-
ment or inflammation in animals and humans, and 
they are considered to be indicative of gut dysbio-
sis and epithelial dysfunction (Hollister et al., 2014; 
Litvak et al., 2017). Alistipes, on the other hand, is 
a potential opportunistic pathogen strongly associat-
ed with gastrointestinal disorders and host diseases 
in humans (Parker et al., 2020). Decreases in the rel-
ative abundance of Proteobacteria and Alistipes are 
indicators of gut microbiota health. Further, heat-
map analysis revealed a significant impact of ASR 
and DBD supplementation on the gut microbiota, 
while the reported effects of Chinese herbal medi-
cines on the metabolic caecal microbiota of broiler 
chickens varied. Overall, our findings suggest that 
ASR supplementation may improve intestinal ecol-
ogy in broilers, promoting both their gut health and 
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systemic well-being. Further studies are required to 
elucidate how ASR and DBD supplementation af-
fects the gut microbiota and interactions between 
the gut microbiota and the host.

Conclusions
In summary, our results demonstrate that supple-

mentation with Angelica sinensis Radix and Danggui 
Buxue Decoction can effectively increase the anti-
oxidant capacity, immune function, and composition 
of the caecal microbiota of broiler chickens. These 
results have significant implications for incorporat-
ing natural plant extracts as feed additives.
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