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ABSTRACT

Recent developments in analytical technology have simplified a detailed characterization of 
milk and milk-based samples. A range of powerful new instrumentation types have recently been 
installed at various institutes at Campus Ås (Norway). At the campus we have recently implemented 
efficient, multi-channel instrumentation for genomics, transcriptomics, proteomics, biospectroscopy, 
metabolomics and various quality assessments. The present paper gives an informal outline of 
various modern analytical  tools  for characterization of various  milk and milk-based samples.  
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INTRODUCTION 

Functional genomics offers new opportunities in milk science research. 
Phenotypic properties can be related to genotypic information statistically, in 
order to quantify expected relationships and to discover unexpected relationships. 
Detailed genomic studies can then reveal the causal genetic basis for these 
relationships, and lead to more efficient animal breeding as well as improved farm 
management, animal feeding and milk processing.

In order to obtain relevant results with sufficient statistical reliability, it is 
advantageous to be able to choose cost-effective measurement techniques: On 
one hand, low-cost high-speed screening methods based on e.g., multivariate 
Fourier Transform Infra Red (FTIR) biospectroscopy, can be applied to millions 
of milk samples or thousands of individual animals in order to identify particularly 
interesting samples or individuals. On the other hand, the most interesting samples 
or animals can be submitted to higher-cost detailed studies, e.g., genome-wide 
characterization of Singe Nucleotide Polymorphism (SNP) for tens of thousands 
of genetic markers, or 2D gel proteome-wide electrophoresis. Economically 
important but more time-consuming quality assessments, such as consumer studies 
or feeding experiments, can finally be used for a small set of particularly interesting 
samples or animals. In between, a number of different types of measurements can 
also be put to use, to reveal systematic patterns of variation. 

Figure 1 illustrates the conventional causality in functional genomics. The right-
pointing arrows linking the boxes show that the genomic information, representing 
diversity in the DNA sequence of the animals, is transcribed into mRNA to 
varying degrees. The transcriptome in turn defines the proteome, which includes 
the enzymes that produces the variety of metabolites - the so-called metabolome. 
Together, the proteome and metabolome affect the quality and quantity (animal 

Figure 1. Integrative functional genomics: Relating traditional genetic data (breeding, management, 
production) to DNA data (genome), mRNA data (transcriptome), protein composition (proteome), 
metabolic profile (metabolome), as well as animal or product quality data and production economy, 
using advanced mathematical and statistical tools, such as bio-chemometrics 
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productivity and - health components, taste, smell and appearance, etc.), which  
in turn affect the  over-all economy of  the  agricultural production. But the left-
pointing arrows linking the boxes  in the figure illustrate that a range of regulatory 
feedback mechanisms complicates this functionality track.

The figure also outlines how data, obtained at different stages along this causality 
track, can be related to external data -  from environment, farm management or 
existing data bases in animal breeding/-health/-production, etc. 

At Campus Ås, the Norwegian University of Life Sciences (UMB), the Norwe-
gian Food Research Institute (Matforsk) and several other institutions have made 
a concerted effort over the last couple of years to ensure sufficient measurement 
capacity at all stages along this functional genomics causality track. 

Several milk- and meat-related research projects, using these new facilities, 
have recently been financed and initiated on the campus.  At this stage it is too early 
to report new research findings. The present paper represents only a brief progress 
report for some of these measuring techniques. Since the concept is highly cross-
disciplinary, the basic principles behind each of the measuring techniques will be 
outlined.

RESULTS

The bovine genome

The sequencing of the bovine genome is expected to be completed in 2007. 
This information will of course be important in basic biological studies - for 
comparison to other species. Moreover, it will help us understand genetic effects 
in bovine milk. The information in the genome is overwhelming, but is now 
becoming accessible with a combination of advanced measuring techniques and 
advanced computer science. 

The bovine genome consists of 30 chromosomes, and each animal has two 
copies of each. Except for the sex chromosome, the two copies are rather similar. 
A chromosome represents a sequence of the four possible DNA nucleotides: 
adenine, cytocine, guanidine and thymine (abbreviated by letters A, C, G and T), 
linked into a DNA strand. “The bovine genome” represents the DNA sequences of 
the 30 bovine chromosomes. 

However, within the bovine species, the DNA sequences of the different 
families are slightly different. Most of these differences represent single-letter 
changes at certain locations, called Single Nucleotide Polymorphisms (SNPs, e.g., 
a C has been changed into a G at position # 1000 along the DNA of chromosome 
10). Once upon a time these SNPs may have arisen by random mutation. But 
unless lethal, these mutations are then passed on from generation to generation, 
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just like spelling mistakes in a medieval manuscript. These variations of the DNA 
sequence of a given SNP are called its “alleles”. Each animal has two alleles at 
each SNP location - one inherited from its mother and one from its father. 

If we hope to explain why different animals grow differently or produce different 
milk qualities, we need to measure which SNP-alleles are found in which breeding 
lines. At the Centre for Integrative Genetics (CIGENE), Norwegian University of 
Life Sciences (UMB), we have several up-to-date types of equipment for SNP 
detection in e.g., semen- or blood samples from individual animals. Methods that 
monitor diversity in a whole range of genes or gene marker positions may be 
called “genomic”.

Figure 2 (left plot) illustrates such a methodology - the output from the new 
22.6K bovine gene marker micro-array chip from the company Affymetrix 
(Affymetrix, Santa Clara, CA, USA). CIGENE has been involved in the 
development of this chip. It delivers allele characterization for each animal at 
more than 22608 different gene marker positions along the DNA sequence, across 
all chromosomes, in terms of microscopic spots, as shown in the Figure.

Figure 2 (right plot) illustrates the output for just one of these gene markers 
for a certain set of cows: some animals are homozygous A/A for this marker (the 
animal has inherited allele A from both its mother and its father), while others are 
homozygous C/C or heterozygous (one copy of A and one copy of C). For each 
animal, such results are delivered for each of 22608 gene markers.

With this type of massively parallel chip-technology, the cost of per individual 
SNP is rather low.  But each animal requires one chip each, so it calls for a 
selection of particularly informative animals. At present, about 1500 sires 
previously or presently involved in the national breeding programme, are the first 

Figure 2. Overview of raw data SNP detection for 23000 gene markers (bovine Affymetrics chip) 
for one bull (left plot). The right plot provides data from one of these gene markers, for a set of NRF 
bulls, showing the three combinations of the two alleles for this SNP (C or A)

Falled
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to be characterized with this technique. Since each of these bulls have a high 
number off daughters, phenotypes measured for individual cows - e.g., milk 
composition - can be averaged into stabile estimates of sire averages. However, 
we also characterize some of the individual dams that are used in animal feeding 
studies at the university farm.

In CIGENE we also have other genomics instrument - e.g., lower-cost 
Sequenom mass-spectrometry based SNP analysis for a few (typically, <50) SNPs 
at a time, and equipment for re-sequencing of selected DNA sequences of selected 
animals, for further SNP identification and - verification.

As Figure 1 illustrated, traditional genetics, employing large data bases of 
breeding information about which bulls have sired which cows etc., can now be 
supplemented with detailed genomic information. 

The DNA sequence information of a given, typical gene consists of its regulatory 
sequence followed by a coding sequence. The gene regulation sequence consists 
of DNA patterns that control how this gene is to be utilized at a given point in time, 
depending e.g., on the presence of gene products from other genes. The coding 
sequence consists of a series of coding regions (exons) whose information can be 
transcribed into messenger RNA (mRNA), interspersed with non-coding regions 
(introns), whose information cannot be translated into mRNA, although they might 
have other roles - this is an open question at present. When the gene’s regulatory 
sequence is activated, its coding regions are transcribed into one contiguous pre-
mRNA sequence, containing both introns and exons. Afterwards the intronic 
sequences are spliced out, leaving a mature mRNA that diffuses out from the cell 
kernel. In many cases, but not all, the mRNA transcript can then be subsequently 
translated into the amino acid sequence of a corresponding protein, because three 
and three adjacent nucleic acids defines a given amino acid. This protein can, 
in turn, serve as enzymatic catalyst in metabolic reactions, as structure-building 
proteins, as gene regulation factors, etc.  Due to so-called alternative splicing one 
DNA sequence can give rise to two or more proteins. 

With genotypic and phenotypic data available for sufficiently many individual 
animals with sufficiently large genetic variation, it is possible to find so-called 
Quantitative Trait Loci (QTL) - DNA regions in the chromosomes that correlate 
statistically to a phenotypic trait. Fine mapping combined with functional studies 
can ultimately reveal the underlying causal mutation(s). 

These research processes, in turn, pose several data analytical challenges - both 
in terms of cross-disciplinary communication, of mathematical data-modelling that 
is cognitively accessible, and of statistical testing that is sufficiently robust against 
false positives, etc. One simplifying aspect of this is to combine the DNA data 
about the many individual SNPs into a lower number of so-called “haplotypes” 
- groups of adjacent gene markers that are inherited together.
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The transcriptome

The complex, dynamic processes of gene regulation, metabolic regulation 
etc., which control the biological activity (cell differentiation, ageing, response 
to environment, etc.), need to be studied if we want to bring our understanding of 
milk production on a causal biological and chemical basis.  For this purpose it is 
important to have cost-effective techniques to monitor the genetic DNA diversity 
as well as the gene transcription into mRNA, proteins and subsequent metabolites 
along the functional genomics causality chain (Figure 1). Methods that monitor 
the expression of a whole range of genes may be called “transcriptomic”. 

The micro-array technique illustrated in Figure 2 can also be used for quantifying 
how each of a high number of genes are transcribed into mRNA in individual 
animals at given points in time. Alternatively, to monitor a lower number of genes, 
but at a lower price per animal, our Sequenom mass-spectrometric instrument can 
be used instead (Ding and Cantor, 2003), as illustrated for a casein gene marker in 
Figure 3. To monitor e.g., how casein production genes are used by a goat, a biopsy 
is taken from udder and quickly conserved to stop chemical modification. After 
various automated mRNA robot-based clean-up stages, the sample is split into 
e.g., 12 aliquotes, and various known concentrations of an artificial “competitor” 
mRNA are added. By the so-called PCR reaction both the unknown and the known 
mRNAs are amplified proportionally to concentrations measurable in the maldi-
tof mass spectrometer.

Figure 3. Gene expression determined by MALDI-TOF mass spectrometry: Quantification of 
two alleles of a given caprine casein gene marker. Left plot: Competitor titration curve to find the 
concentration of mRNA in this udder biopsy. Right plot: MALDI-TOF MS “spectrogram” raw data 
for a specific (targeted) gene for one single goat sample at one given competitor concentration. 
Screenshots from the Sequenom software
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In the left plot of Figure 3 the relative concentration of the mRNA for this gene 
is plotted against known concentrations of an artificial “competitor” mRNA. The 
white arrows indicate how the unknown mRNA concentration of this gene in this 
udder biopsy is determined as the competitor concentration that gives the same 
mass spectrometric peak height. The right plot of Figure 3 illustrates the mass 
spectrometric raw data at one of these known concentrations.

With this technique we can study how the mRNA expression of various genes, 
e.g., the synthesis of the four major caseins, vary with their DNA allele structure, 
with lactation cycle, feeding and stress, etc.

The proteome

The degree to which the produced mRNA of a gene results in actual proteins 
is also informative. Methods that monitor a whole range of proteins can be called 
“proteomic”.  

Figure 4 (left plot) illustrates the “classical” proteomics technique - 1D gel 
electrophoresis (isoelectric focusing), for goat milk samples. Several different 
milk samples are applied side by side, and the proteins - caseins and whey proteins 
- are then separated into bands according to their electric charge. In order to be 
useful in functional genomics, these proteomic images need to be converted into 
quantitative data. This involves scanning the gels as digital images and tracing the 
individual tracks, as illustrated by two samples.

Examples of quantified electrophoresis raw data traces from two animals are 
shown at the top of Figure 4 (right plot). In order to compare them, two types of 
normalization are then required: horizontal spatial alignment (middle), to correct 

Figure 4. Proteomics of milk proteins. Left plot: 1D electrophoresis image with two samples (tracks) 
marked for quantification. Right plot: normalization of 1D electrophoresis data from one track 
(solid) relative to a reference track (dotted): Top: raw data. Middle: data aligned spatially. Bottom: 
aligned, baseline- and scale-corrected data
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for physical variations in the electrophoresis gel structure, and vertical intensity 
correction (bottom), consisting of a subtraction of baseline background and a 
division by an overall scaling factor. 

Figure 5 shows the results after normalization of the milk proteins from 
two animals representing two of the most typical Norwegian goat genotypes. 
Animal no. 3328 was previously found by DNA assessment (Figure 2) to be 
heterozygous for a certain position for αS1 casein in exon 12 - the animal has 
one normal (G) allele and one allele called “null” which is a deletion (0) that 
results in no production of the normal αS1 casein. In contrast, animal no. 3270 
is homozygous in the αS1-casein (00) - it totally lacks expression of the normal 
allele. As expected, the proteomic results in Figure 5 indicate that the latter 
lacks the normal αS1-casein.

The proteomic measurements can also reveal other details. For instance, 
several different phosphorylated forms of the αS1 casein are evident. However, 
1D electrophoresis is somewhat time-and labour-consuming.

Figure 6 illustrates how similar proteomic “fingerprint” can be obtained 
with MALDI-TOF analysis, which is faster and less labour-intensive. With this 
technique, the skim-milk samples are simply diluted, mixed with a light-absorbing 
matrix compound, spotted and dried on a steel plate and measured. Each plate 
takes 96 different sample spots. The plate is then bombarded in vacuum with 
shots of intense laser light on each spot, which vaporizes and ionizes the proteins. 
An electrical field then drives the ionized proteins towards a mass spectrometric 
detector; smaller proteins arrive before the larger proteins.  Figure 6 shows the 

Figure 5. 1D electrophoresis of milk from two goats differing in αS1-casein
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milk proteome of the same two individual goats as in Figure 5, no. 3270 (00) and 
no. 3328 (G0). For more information, see e.g., Chianese et al. (1993) and Miranda 
et al. (2004).

The metabolome - chromatography

The enzymatic activities from the proteome catalyse the metabolic processes in 
the cell. Methods that monitor a whole range of metabolic components or aspects 
can be called “metabolomics”. The classical metabolic measurement principle 
is chromatography, in which the different chemical components in a sample are 
separated from each other by passing the sample through a chromatographic 
column. 

Figure 7 shows the fatty acid profile of a bovine milk sample, based on gas 
chromatography with mass spectrometric detection. The fatty acids can be 
quantified from the areas or their respective peaks, after horizontal alignment of 
retention time and vertical subtraction of baseline and scaling for general size 
factor. A number of different fatty acids can thus be quantified, with different 
chain lengths, different degrees and patterns of unsaturation, etc. 

This type of fatty acid profile data, measured for a large number of related milk 
samples, can be related to genomic, transcriptomic or proteomic data for the same 
samples, as well as to other known variables such as feeding strategy, time of year, 
etc. Multivariate analysis of these data can then reveal their common underlying 
biological production mechanisms. Chromatographic metabolome analyses can 
of course also be performed for other compositional aspects of milk, blood, urine, 
etc., e.g., hormones, oxidation products, anti-oxidants. For instance, GC-MS is 

Figure 6. Proteomic MALDI-TOF mass spectrometry of two caprine milk samples
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a suitable technique for analysing volatile oxidation products of milk and milk 
products. GC with fluorescence detection is a suitable tool for the qualitative and 
quantitative analysis of tocopherols. 

The biological structure detection - biospectroscopy

While chromatography is generally a mature technology delivering reliable 
results, faster metabolome alternatives are available, based on spectrophotometry.

Photons are affected by milk samples in various ways, and several principally 
different spectrophotometric techniques are used for the qualitative and quantitative 
analysis of milk samples.  Most of these techniques are cheap, fast and precise, and 
yield several types of information about the samples at the same time.  

Figure 8 shows the infrared absorption spectra of a set of bovine milk samples, 
in terms of the absorbance as a function of wavenumber (the wavenumber 
convention is just the inverse of the wavelength). The data were obtained in 
one of our modern Fourier-Transform Infra Red spectrometers (Bruker), after 
simply applying a drop of milk on a zinc selenide surface, drying off most of the 
water, and recording how much light survives through the sample at different 
wavelengths in the infrared range, i.e. at wavelengths longer than that visible to 
the human eye. The figure illustrates that different milk constituents - proteins, 
lipids, carbohydrates and remaining (bound) water, absorb light at more or less 
distinct wavenumber regions, because their different chemical bond types (-C-H3, 
-O-H, (-N-H2, etc.) vibrate, and thus absorb light, at different frequencies in this 

Figure 7. Metabolomics of milk: GC-MS determination of fatty acid profile of a bovine milk sample
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region of the light spectrum. Hence, milk samples with different levels of these 
constituents give different absorbance spectra. 

Upon closer inspection, some of the spectral differences are found to be due 
to variations in the physics of the sample - light scattering and sample thickness. 
These can be estimated and corrected for mathematically, yielding spectra with 
a wealth of information about the samples’ variation in chemical composition, 

Figure 8. FTIR absorbance spectra of a set of dried bovine milk samples

Figure 9. FTIR absorbance of homogenized whole milk

Wavenumber, cm-1

Wavenumber, cm-1
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including the main aspects of fatty acid variation and possibly some of the protein 
variations. 

One of the FTIR techniques used routinely for quality assessment of milk 
(Figure 9) works on intact milk samples - the Foss Electric Milkoscan instrument.  
Due to the high water content in milk, and the high absorbance of water, this 
restricts the wavenumber region where precise measurements are possible. 

Work is in progress to store millions such bovine milk spectra per year, 
representing thousands of individual cows several times a year. By multivariate 
biochemometric analysis, systematic patterns of variation in these spectra will be 
averaged for the individual sires, and then related to available genetic, genomic 
and farm management information.

Figure 10 shows a third biospectroscopic principle: Raman scattering. This type 
of measurements gives data similar to FTIR and NIR, but is primarily sensitive to 
symmetrical molecular bonds, such as –C-C– or –C=C–, and is therefore more or 
less insensitive to the presence of water - in contrast to FTIR. Thus, Raman and 
infrared spectroscopy complement each other. The figure outlines some of the 
chemical bond types detectable with this instrumentation. 

The molecular vibrations from the infrared region in Figures 8 and 9 can 
also be observed in the near-infrared (NIR) wavelength region, in terms of their 
overtones. The absorbance signals are now much weaker, and can therefore be 
measured easily. Figure 11 shows the NIR spectra a set of natural and modified 
bovine milk samples, measured by diffuse reflection (top) and diffuse transmission 
(bottom), using an NIR Systems instrument at our research partners at Copenhagen 

Figure 10. Raman spectra of a milk sample, with band assignment
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University. The data originate from a profiling experiment on the sensory perception 
of fat, homogenization, etc. in milk (Frøst et al., 2001). Campus Ås has several 
of these instruments. In both measurement modes the water, lipids, proteins and 
carbohydrates give rise to broad, somewhat overlapping absorption peaks. In 
addition, variations in light scattering of these milk samples due to e.g., varying 
homogenization, cause strong over-all spectral variations. Again, mathematical 
pre-processing of the spectra can separate the physical scattering variations from 
the chemical absorbance variations.

Figure 11 also includes the visible wavelength range (400-700 nm), where 
various pigment molecules display light absorption due to electronic transitions. 
This wavelength range can be used to predict how consumers will perceive the 
appearance of milk and milk products.

Finally, Figure 12 represents quite a different type of biospectroscopy - namely 
autofluorescence (Wold et al., 2005). When milk or milk products are illuminated 
by visible or ultraviolet light, some of the photons are absorbed temporarily by 
particular milk components, and re-emitted at higher wavelengths. The wavelength 
shift reflects the type of molecule, while the intensity of the emitted light at a 
given wavelength reflects the concentration of the corresponding compound(s).  
The figure illustrates what happens to a given type of cheese when exposed to 
light from a commercial fluorescent light tube. This experiment showed that 
different types of ambient light during cheese storage caused different types of 

Figure 11. Visible- and near-infrared (NIR) spectra of a set of wet milk samples, obtained by diffuse 
reflection (top) or diffuse transmission (bottom)
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photo-oxidation and thus different degrees of sensorically perceived rancidity, 
which can be affect consumer acceptance.  

Considering the different nature of the identified fluorescing compounds - some 
are probably derived from the animal itself, others from the feed - it may well be 
that fluorescence measurements of series of milk samples can yield phenotypic 
variations associated with the genome  of the animals - or of the feed. 

The product quality and production economy

The economic value of the milk, yoghurt, cheese, etc. depends on the willingness 
of consumers to buy the products. This is, in turn, largely dependent on the sensory 
properties of the products. In those cases when it has already been clearly established 
which chemical compounds or physical aspects of the milk that determine variations 
in its sensory properties, it is sufficient to measure these properties chemically or 
physically. Otherwise, it is safer to include actual sensory perception studies. Due 
to developments in the cognitive sciences, etc., modern sensory science is highly 
informative, reliable and cost-effective. Consumer studies are useful tools for 
measuring consumer liking - if done professionally (it is not enough just to distribute 
a simple questionnaire!). Descriptive sensory profiling with a trained assessor panel 
provides insight into the reasons why the consumers perceive products differently. 

Provided that high-throughput methods, like genetic pedigree assessment, 
genomic profiling or biospectroscopy screening, have been used to identify 
particularly interesting milk samples, sensory profiling and consumer testing can 
be used to obtain the commercially relevant assessment of these.

Figure 12. Fluorescence emission spectra from Swiss-like cheese exposed to light from a commercial 
fluorescent light tube. Light exposure times varied from 0 to 10 h
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Figure 13 shows an example of a sensory study of variations in a milk-based 
product (Hersleth et al., 2005). Twelve batches of a certain type of cheese were 
identified as spanning a large range of quality, based on the producer’s routine 
assessment. These samples were submitted to quality ratings by 5 cheese experts as 
well as descriptive profiling by 10 trained sensory assessors. The figure summarizes 
how the three over-all quality rating variables (average of five experts) could be 
explained by the 17 descriptors (average of 10 panelists) by Partial Least Squares 
Regression, using The Unscrambler software (www.camo.com). The abscissa and 
ordinate show the correlations between the input variables and the two first latent 
variables, i.e. the two main patterns of co-variation. The figure shows e.g., that 
over-all expert score and flavour correlated positively with mature flavour and 
-odour, graininess, dryness, etc. and negatively with acidity. Consistency reflected 
minor constrasts in grainness vs firmness, and was negatively associated with 
saltiness. 

The five most extreme cheeses were then selected for subsequent consumer 
assessment, where 110 consumers assessed their hedonic liking as well as their 
perception of flavour and texture. Details of the study are given in Hersleth et al. 
(2005). 

The same approach can be used for assessing variations in e.g., fresh milk 
quality as function of e.g., animal genetics or -feeding.

Figure 13. Sensory quality assessment of milk and milk products. Correlation loading plot summarizing 
a PLSR model of how 17 sensory descriptors (average of 10 trained assessors) predict rating of three 
quality aspects (bold italics, average of 5 experts) in 12 samples of a given type of cheese, selected to 
span large quality variation. The same approach can be used for fresh milk samples
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Integrating the various sources of information

The different blocks of data types in functional genomics outlined in Figure 1 
have been illustrated in the subsequent figures. Multivariate data modelling can 
then be used for integrating the different types of information, in terms of the 
underlying structures within each of the blocks as well as the relationships between 
them. Combination of modern bioinformatics, biostatistics and biochemometrics 
can then bring out the statistically valid information. For instance, the multivariate 
“soft modelling” approach explained by Martens and Martens (2001) may be used 
for this purpose - testing hypotheses and discovering unexpected patterns of co-
variation within and between various blocks of measured variables. 

As Figures 4-12 have demonstrated, milk samples can thus be phenotypic 
fingerprinted with respect to a number of different properties ranging from proteome 
details to a variety of metabolomic and quality aspects. By data modelling, these 
phenotypic data can be related to the gene expression measurements from e.g., udder 
biopsies (Figure 3), SNP structures (Figure 2) and/or genetic background information, 
e.g., in terms of estimated haplotype structure. All of these data can in turn be related 
data-analytically to external environmental or farming management data (Figure 1). 
Of course, it is not necessary to obtain all types of measurements for all milk samples 
or all animals. But once the particuarly interesting milk samples have been obtained 
or particularly interesting animals identified in one research project, we try to secure 
enough material to allow other types of measurements of these. 

This inter-disciplinary research process requires that several different 
institutions, in different locations and with different financial organizations, have 
to cooperate. At each stage, professionalism is needed, in order to secure high-
quality data. But equally important, distinctly different research cultures will 
have to meet, ranging from animal science, genetics and genomics via analytical 
chemistry to dairy science and sensory science. 

DISCUSSION

One important aspect of this cross-disciplinary effort is to ensure that the 
research process contains both
– the explorative discovery aspect that stimulates innovation and real-world 

relevance
– the confirmative testing aspect that satisfies “the hypothetic-deductive method”  

to guard against false interpretations and wishful thinking
– the mechanistic detailing aspects that can provide causal insight.

One way to overview this work is outlined in Figure 14. The research is 
considered  in more or less formal research cycles.  Each  of  these  cycles  convert
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inductively formulated ideas from previous cycles into deductively tested 
conclusions plus new inductive discoveries. The data-modelling stages within 
each stage are also outlined in the Figure. In this framework there is a need for all 
the above-mentioned scientific cultures.

The integrative genetic approach, which includes molecular genomics, high-
definition phenotype screening as well end-use quality relevance, is rather generic. 
For instance, not only the bovine or caprine animal genome and its relationship to 
milk quality is of interest in this context; the same concepts and methods may also 
be applied to the feed plants as well as to the intestinal microflora of the animals 
- to reveal their interactions.

So, why do we try to form this concerted cross-disciplinary environment in 
milk and milk-related research? It is because we hope to gain more insight and 
faster research progress by cooperating across scientific traditions. Our campus is 
large enough to have many types of milk-related expertises, but small enough to 
foster cooperation synergy. Once an interesting set of samples has been acquired 
for one given type of measurement, the cost of adding e.g., biospectroscopic 
fingerprinting is usually small, while the benefit of the resulting added insight can 
be substantial.

Figure 14. Research progress in cross-disciplinary studies: Repeating the research cycle of explorative 
induction and confirmative deduction
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For instance, in animal feeding experiments, unintended genetic differences 
between animals usually represent a source of unfortunate “biological variation” 
that creates “random errors”. With the present approach they can be characterized 
as genetic variations that can be identified and compensated for, in the experimental 
design phase and/or during the subsequent data analysis, thereby increasing the 
statistical power of the feeding experiments. Genotype x environment interactions 
may even be revealed. The same goes for dairy science experiments concerning 
e.g., milk quality. Conversely, in genetic studies, unintended environmental 
variations in a given phenotype due to e.g., farming practice can be picked up 
by other phenotypic measurements and corrected for statistically, making the 
subsequent genetic data modelling more precise - possibly with fewer animals. 
Finally, the explosive development in available molecular genomics is expected 
to provide causal insight into both genomic and environmental basis for milk 
production and milk quality. However, these are early days, and only time will 
show if the cross-disciplinary platform will be worth while. 
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