Effect of dietary selenium supplementation (organic and inorganic) on carcass characteristics and meat quality of ruminants: a meta-analysis

T. Wahyono1,*, R. Wahyuningsih1, A.I. Setiyawan1, D. Pratiwi1, T. Kurniawan1, S. Hariyadi1, M.M. Sholikin2,3, A. Jayanegara3,4, E. Triyannanto5 and A. Febrisiantosa1

1 National Research and Innovation Agency of Indonesia, Research Center for Food Technology and Processing, 55861 Gunungkidul, Indonesia
2 National Research and Innovation Agency of Indonesia, Research Center for Animal Husbandry, 16915 Bogor, Indonesia
3 IPB University, Faculty of Animal Science, Animal Feed and Nutrition Modeling (AFENUE) Research Group, 16680 Bogor, Indonesia
4 IPB University, Faculty of Animal Science, Department of Animal Nutrition and Feed Technology, 16680 Bogor, Indonesia
5 Universitas Gadjah Mada, Faculty of Animal Science, Department of Animal Products Technology, 55281 Sleman, Indonesia

KEY WORDS: meat quality, meta-analysis, ruminant, selenium, supplementation

ABSTRACT. The objective of this study was to evaluate the effects of dietary selenium supplementation (organic and inorganic) on carcass characteristics and meat quality in ruminants. The data sources for this meta-analysis originated from several databased (Scopus, PubMed, and Google Scholar), searched for the keywords: “selenium”, “supplementation”, “meat”, “cattle”, “goat” and/or “sheep”. The results of meta-analysis were statistically analysed using mixed model methodology. After assessing compliance with the objectives of the work and research topic, a total of 19 articles (out of 26 studies) were selected and included in the database. Individual studies were treated as random effects, whereas Se levels were considered fixed effects. The results showed that Se supplementation increased hot carcass weight and rib eye area ($P < 0.01$). The weight of the fore shank and testicles was also increased due to Se supplementation ($P < 0.05$); however, dietary Se addition decreased rib and lung weight ($P < 0.05$). With regard to meat quality, Se addition increased total Se level in meat ($P < 0.01$), decreased the concentration of thiobarbituric acid reactive substances and cooking loss percentage ($P < 0.05$). However, the addition of Se did not affect the majority of carcass cuts (saddle, breast, loin, legs, and rack), which had similar proximate parameter values and cholesterol levels. It can be concluded that Se supplementation can improve carcass and meat quality in ruminants.

Introduction

Healthy farm animal products have recently become a major focus of the livestock industry in many countries. As humans currently live in a nutritional environment that differs from the one that selected our genetic constitution, functional foods aim to bridge the nutritional gap between the Western diet and genetically determined requirements (Matics et al., 2017). In recent years, many studies have been published concerning selenium supplementation and functional meat production. Supplementing bull rations during the finishing period is a promising strategy to increase the concentration of
essential nutrients in meat to the levels required for specific health claims and classification as healthy food and a significant source of these compounds (Haug et al., 2018). A good bioavailable source of Se from food is required for the full expression of selenoproteins with antioxidant function, especially in diseases associated with oxidative stress (Jarzyńska and Falandysz, 2011). Se plays an important role in the immune system, however, the true extent of Se's immunomodulatory capacity remains unknown (Pecoraro et al., 2022). Glutathione peroxidases are antioxidant enzymes that contain selenium and catalyse the reduction of lipid and hydrogen peroxides to less harmful products, providing protection against oxidative stress (Cozzi et al., 2011; Ripoll et al., 2011; Zhang et al., 2020a).

Selenium both improves animal health and provides high-quality meat for humans (Joksimovic-Todorovic et al., 2012). In addition to being useful for product fortification, Se supplementation has also been reported to improve livestock performance. Adding appropriate Se levels to the diet can promote the growth and development of animals (Zhang et al., 2020a). Zepeda-Velazquez et al. (2020) reported that Se supplementation improved the antioxidant status and productive performance of broilers under heat stress. Oral Se supplementation in dairy cattle was shown to improve Se milk levels (Ceballos et al., 2009). Two forms of Se can be considered in the livestock industry, i.e. inorganic (sodium selenite or selenate), or organic (selenium yeast and selenomethionine). Sodium selenite and selenium yeast have been commonly used as Se supplementation sources to improve performance, immune function, and meat quality in animals (Zhang et al., 2020b). Sodium selenite is commonly used as an additive for dairy cows since it is less expensive than organic selenium (Azorin et al., 2020). However, the rate of ruminal microbial uptake of inorganic selenium is lower compared to its organic counterpart. Moreover, powdered inorganic salts are very sensitive to the dissolution and formation of elemental Se in the rumen environment (Niwińska and Andrzejewski, 2017). Previous studies have demonstrated that selenium yeast, the most commonly used organic Se feed supplement, has a greater bioavailability (Yoshida et al., 1999; Wei et al., 2019). Approximately 63% of the total Se content in selenium yeast is Se-methionine incorporated in Saccharomyces cerevisiae proteins (Czauderna et al., 2009; Rozbicka-Wieczorek et al., 2016).

To our knowledge, no studies to date have attempted to quantitatively summarise the effect of Se supplementation on carcass and meat quality of sheep, goats, and cattle. It is necessary to provide an overview of the effect of Se supplementation on meat quality and livestock performance. Therefore, this study aimed to conduct a meta-analysis of published experiments regarding the effects of Se supplementation (organic and inorganic) on carcass characteristics and meat quality in ruminants. Other related parameters such as average daily gain (ADG), dry matter intake (DMI), and gain to feed ratio were also analysed to comprehensively assess the effect of Se in ruminants.

Material and methods

Literature search and database development

Keywords included “selenium”, “supplementation”, “meat”, “cattle”, “goat” and/or “sheep” searched against the Scopus, Google Scholar and Science Direct databases. Meta-data were compiled from published trial reports evaluating the effect of Se supplementation on carcass characteristics and meat quality. The criteria for registering articles in the database were as follows: (1) article was submitted in English; (2) experiments were performed in ruminants (beef cattle, sheep, and goat); (3) study was performed in vivo; (4) Se sources, types and dietary levels were reported; (5) carcass characteristics and meat quality parameters were reported. When a published article described more than one experiment, each individual examination was coded separately. A total

Figure 1. Flowchart of literature selection for meta-analysis
of 26 experiments from 19 studies were registered in the database (Vignola et al., 2009; Liao et al., 2011; Liu et al., 2011; Hernandez-Calva et al., 2013; Netto et al., 2014; Sushma et al., 2015; Aghwan et al., 2016; Jaworska et al., 2016; Przybylski et al., 2017; Haug et al., 2018; Mahmood et al., 2018; Maraba et al., 2018; Bezerra et al., 2020; Silva et al., 2020; Grossi et al., 2021; Shin et al., 2021; Jia et al., 2022; Mariezcurrena-Berasain et al., 2022; Tian et al., 2022). Details of the studies included in the meta-analysis are listed in Table 1. Among the ruminant species, sheep, beef cattle, and goats were included. The analysed sheep breeds included Italian Apennine, Dorper × Santa Ines, Pelibuey, Karadi, Nellore, Corriedale, Dohne Merino, and Merino. Beef cattle breeds were Nelore, Hanwoo, Norwegian Reed, Angus, Charolais, and Brangus. Goat Breeds included Kacang and Qianbei-pockmarked. Most of the described diets were total mixed ration diets with a small proportion of high-concentrate rations. Se levels in the diets varied from 0 to 4.8 mg/kg dry matter intake (DMI). Se sources were derived from both organic and inorganic species. Since the authors often did not report Se supplementation

Table 1. Studies included in the meta-analysis of the effect of selenium (Se) supplementation on carcass characteristics and meat quality of ruminants

<table>
<thead>
<tr>
<th>No.</th>
<th>Reference</th>
<th>Se source</th>
<th>Se type</th>
<th>Basal feed</th>
<th>Animal</th>
<th>Se level, mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vignola et al., 2009</td>
<td>Sodium selenite and SeY</td>
<td>Inorganic and organic</td>
<td>TMR (2:5 hay/concentrate ratios)</td>
<td>Sheep</td>
<td>0; 0.3; and 0.45</td>
</tr>
<tr>
<td>2</td>
<td>Liao et al., 2011</td>
<td>Sodium selenite and Sel-Plex®</td>
<td>Inorganic and organic</td>
<td>TMR (cottonseed hulls/soybean hulls/cracked corn/soybean meal)</td>
<td>Heifer cattle</td>
<td>0; and 0.76</td>
</tr>
<tr>
<td>3</td>
<td>Liu et al., 2011</td>
<td>Sodium selenite</td>
<td>Inorganic</td>
<td>Pellet (hay/lupin/barley)</td>
<td>Sheep</td>
<td>0; and 2.5</td>
</tr>
<tr>
<td>4</td>
<td>Hernandez-Calva et al., 2013</td>
<td>Sodium selenite</td>
<td>Inorganic</td>
<td>TMR (hay/grain/meal/molasses cane)</td>
<td>Sheep</td>
<td>0; and 0.3</td>
</tr>
<tr>
<td>5</td>
<td>Netto et al., 2014</td>
<td>Sodium selenite</td>
<td>Inorganic</td>
<td>High concentrate diet</td>
<td>Bull</td>
<td>0; and 2</td>
</tr>
<tr>
<td>6</td>
<td>Sushma et al., 2015</td>
<td>Sodium selenite</td>
<td>Inorganic</td>
<td>Fodder and concentrate</td>
<td>Sheep</td>
<td>0; 0.1; 0.2; and 0.4</td>
</tr>
<tr>
<td>7</td>
<td>Aghwan et al., 2016</td>
<td>Not described</td>
<td>Inorganic</td>
<td>Concentrate and ad libitum fresh guinea grass</td>
<td>Goat</td>
<td>0; and 0.6</td>
</tr>
<tr>
<td>8</td>
<td>Jaworska et al., 2016</td>
<td>SeY and selenate</td>
<td>Organic and inorganic</td>
<td>TMR (hay, soybean meal, barley meal, and wheat starch)</td>
<td>Sheep</td>
<td>0; and 0.35</td>
</tr>
<tr>
<td>9</td>
<td>Przybylski et al., 2017</td>
<td>SeY and selenate</td>
<td>Organic and inorganic</td>
<td>Concentrate and hay</td>
<td>Sheep</td>
<td>0; and 0.35</td>
</tr>
<tr>
<td>10</td>
<td>Haug et al., 2018</td>
<td>SeY</td>
<td>Organic</td>
<td>Concentrate and ad libitum silage (grass and clover)</td>
<td>Bull</td>
<td>0; and 0.5</td>
</tr>
<tr>
<td>11</td>
<td>Mahmood et al., 2018</td>
<td>Sodium selenite</td>
<td>Inorganic</td>
<td>TMR (barley, wheat bran, soybean meal, yellow corn)</td>
<td>Sheep</td>
<td>0; 0.15; and 0.25</td>
</tr>
<tr>
<td>12</td>
<td>Maraba et al., 2018</td>
<td>Selenium premix</td>
<td>Inorganic</td>
<td>TMR</td>
<td>Sheep</td>
<td>0; and 0.2</td>
</tr>
<tr>
<td>13</td>
<td>Silva et al., 2020</td>
<td>SeY and sodium selenite</td>
<td>Organic and inorganic</td>
<td>TMR (corn silage, corn grain, and soybean)</td>
<td>Bull</td>
<td>0; 0.3; 0.9; and 2.7</td>
</tr>
<tr>
<td>14</td>
<td>Bezerra et al., 2020</td>
<td>Hydroxy-selenomethionine</td>
<td>Organic</td>
<td>High concentrate diet</td>
<td>Sheep</td>
<td>0; and 0.5</td>
</tr>
<tr>
<td>15</td>
<td>Grossi et al., 2021</td>
<td>Sodium selenite, SeY and hydroxy-selenomethionine</td>
<td>Inorganic and organic</td>
<td>TMR (maize silage, corn meal, wheat bran, soybean meal, distillers, brewers, wheat straw, and cocoa panel)</td>
<td>Bull</td>
<td>0.2</td>
</tr>
<tr>
<td>16</td>
<td>Shin et al., 2021</td>
<td>Not described</td>
<td>Organic</td>
<td>TMR (corn grain, corn gluten feed, wheat, palm kernel expeller, coconut meal, lupin)</td>
<td>Cattle</td>
<td>0; and 0.08</td>
</tr>
<tr>
<td>17</td>
<td>Mariezcurrena-Berasain et al., 2022</td>
<td>SeY</td>
<td>Organic</td>
<td>TMR (whole sorghum</td>
<td>Sheep</td>
<td>0; 0.35; and 0.6</td>
</tr>
<tr>
<td>18</td>
<td>Jia et al., 2022</td>
<td>SeY</td>
<td>Organic</td>
<td>TMR (alfalfa, maize, soybean meal, cottonseed meal)</td>
<td>Sheep</td>
<td>0.25; 0.5; 1; and 2</td>
</tr>
<tr>
<td>19</td>
<td>Tian et al., 2022</td>
<td>SeY</td>
<td>Organic</td>
<td>TMR (peanut vines, white distiller’s grains, soybean residues, green hay, and corn)</td>
<td>Goat</td>
<td>0; 2.4; and 4.8</td>
</tr>
</tbody>
</table>

SeY – selenium-enriched yeast, Sel-Plex® – organic selenium from Alltech, Inc., TMR – total mixed ration
in relation to feed recovery, we did not use Se recovery, but rather the dose applied directly by the authors.

The parameters integrated in the database were: slaughter weight (SW), hot carcass weight (HCW), dressing percentage (DP), carcass length (CL), fat thickness (FT), rib eye area (REA), loin eye area (LEA), carcass cuts (saddle, breast, ribs, loin, legs, rack, and fore shank), edible organ weight (heart, kidneys, liver, lungs, spleen, and testicles), total Se in meat, meat pH value, lightness (L*), redness (a*), yellowness (b*), drip loss, cooking loss, shear force, tenderness, thiobarbituric acid reactive substances (TBARS), meat cholesterol, meat proximate (moisture, crude protein, crude fat, and crude ash), marbling score, sensory traits (flavour, odour intensity, juiciness, and hardness), average daily gain (ADG), dry matter intake (DMI), and gain to feed ratio. Since the present study considered all experiments with small and large ruminants jointly, body size parameters were standardized based on DMI or body weight (BW). Parameters and values reported in different measurement units were converted to standard units.

Data analysis

The data from the meta-analysis were statistically analysed using linear mixed model methodology (LMM) (St-Pierre, 2001; Sauvant et al., 2008). Individual studies were treated as random effects, whereas Se addition levels were considered fixed effects. The mathematical models employed were as follows:

\[Y_{ij} = \mu + s_i + \tau_j + st_{ij} + \beta_{0} + \beta_{1} X_{ij} + b_{i} X_{ij} + e_{ij} \]
\[Y_{ij} = \mu + s_i + \tau_j + st_{ij} + \beta_{0} + \beta_{1} X_{ij} + \beta_{2} X_{ij}^2 + b_{i} X_{ij} + e_{ij} \]

where: \(Y_{ij} \) – the dependent variable, \(\mu \) – the overall average value, \(s_i \) – the random effect of study, \(\tau_j \) – the fixed effect of \(j \) from different Se level, \(st_{ij} \) – the random interaction factor between different studies and the fixed effect of Se, \(\beta_{0} \) – the overall average intercept of \(Y \), \(\beta_{1} \) – the linear regression coefficient of \(Y \) on \(X \) (fixed effect), \(\beta_{2} \) – the quadratic regression coefficient of \(Y \) on \(X \) (fixed effect), \(X_{ij} \) – the level of Se in numerical form, \(b_{i} \) – the random effect of the regression coefficient \(Y \) on Se level, and \(e_{ij} \) – the unexplained residual error.

Statistical analysis was calculated using R software version 4.1.2 by R Core Team (2022) equipped with the ‘lme4’ library version 1.1-28. the residual mean square error (RMSE) and the determination coefficient of Nakagawa \(R_{GLMM}^2 \) were used to validate the model (Nakagawa and Schielzeth, 2013; Nakagawa et al., 2017; R Core Team, 2022). The equations used were as follows:

\[RMSE = \sqrt{\frac{\sum(A-P)}{NDP}} \]
\[R_{GLMM}^2 = \frac{(\sigma_f^2 + \sum(\sigma_f^2))}{(\sigma_f^2 + \sum(\sigma_f^2) + \sigma_e^2 + \sigma_d^2)} \]

where: \(A \) – the actual value, \(P \) – the prediction value, \(NDP \) – the number of data points, \(\sigma_f^2 \) – the fixed factor variance, \(\sum(\sigma_f^2) \) – the sum of all component variances, \(\sigma_e^2 \) – the variance due to Se level dispersion, and \(\sigma_d^2 \) – the specific distribution from the variance. Significance was declared at \(P < 0.05 \). If the \(P \)-value was between 0.05 and 0.10, it was considered a significant tendency.

Results

Effects of Se supplementation on carcass characteristics

Se supplementation increased HCW and REA of ruminants (\(P < 0.01 \); Table 2). In contrast, Se addition did not influence SW, CL, and LEA, while FT was elevated (\(P < 0.05 \)). Dietary Se supplementation also tended to increase DP (\(P < 0.1 \). Se supplementation had no effect on most of carcass cuts (saddle, breast, loin, legs, and rack); however, it decreased rib weight (\(P < 0.05 \)) and increased fore shank weight (\(P < 0.05 \)). With regard to edible organ weight, dietary Se addition decreased lung weight (\(P < 0.05 \)) and increased testicular weight (\(P < 0.05 \)). Se supplementation had no effect on the weight of majority of edible organs (heart, kidneys, liver, and spleen).

Effects of Se supplementation on meat quality and performance

Se supplementation had no effect on lightness (\(L^* \)), redness (\(a^* \)), yellowness (\(b^* \)), shear force, and tenderness of meat (Table 3). Se tended to decrease the pH value (45 min and 24 h), and drip loss of meat (\(P < 0.1 \)). Further, dietary Se increased total Se in meat (\(P < 0.01 \)), decreased cooking loss percentage (\(P < 0.05 \)), and TBARS levels (\(P < 0.05 \)). Generally, Se supplementation did not affect any of the proximate parameters and cholesterol levels. Apart from the hardness value (\(P < 0.05 \)), Se did not affect most of sensory trait parameters. In turn, the addition of Se increased the daily DMI and ADG of the animals (\(P < 0.01 \)), but there was no significant effect on the gain to feed ratio (Table 4).
Table 2. Influence of selenium supplementation (mg/kg) on carcass characteristics of ruminants

<table>
<thead>
<tr>
<th>Response parameter</th>
<th>Unit</th>
<th>N</th>
<th>Intercept</th>
<th>SE Intercept</th>
<th>Slope</th>
<th>SE Slope</th>
<th>P-value</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW</td>
<td>kg</td>
<td>30</td>
<td>163 59.7</td>
<td>1.40 0.93</td>
<td>0.139</td>
<td>3.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCW</td>
<td>kg</td>
<td>56</td>
<td>47.3 31.5</td>
<td>3.15 0.80</td>
<td>0.001</td>
<td>1.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP</td>
<td>%</td>
<td>44</td>
<td>47.3 2.35</td>
<td>0.33 0.19</td>
<td>0.098</td>
<td>0.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>cm</td>
<td>15</td>
<td>66.0 2.38</td>
<td>0.71 1.91</td>
<td>0.719</td>
<td>2.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT</td>
<td>mm</td>
<td>11</td>
<td>4.12 0.81</td>
<td>-23.7 9.69</td>
<td>0.040</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REA</td>
<td>cm²</td>
<td>10</td>
<td>44.8 32.4</td>
<td>4.08 0.95</td>
<td>0.005</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEA</td>
<td>cm²</td>
<td>10</td>
<td>44.6 19.4</td>
<td>0.54 1.17</td>
<td>0.049</td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carcass cuts

- saddle kg: 4 kg
- breast kg: 7 kg
- ribs kg: 4 kg
- loin kg: 11 kg
- legs kg: 11 kg
- rack kg: 7 kg
- fore shank kg: 7 kg

Table 3. Influence of selenium supplementation (mg/kg) on meat quality of ruminants

<table>
<thead>
<tr>
<th>Response parameter</th>
<th>Unit</th>
<th>N</th>
<th>Intercept</th>
<th>SE Intercept</th>
<th>Slope</th>
<th>SE Slope</th>
<th>P-value</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Se</td>
<td>μg/kg</td>
<td>30</td>
<td>98.2 32.8</td>
<td>62.9 13.8</td>
<td>0.001</td>
<td>44.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

45 min

- pH: 16
- L*: 16
- a*: 16
- b*: 16

24 h

- pH: 34
- L*: 29
- a*: 29
- b*: 29

48 h

- L*: 10
- a*: 10
- b*: 10

Cooking loss %: 21

Shear force kg: 17

Tenderness kgf: 6

TBARS μg malondialdehyde/kg: 21

Proximate moisture %: 25

Crude protein %: 25

Crude fat %: 24

Crude ash %: 22

Cholesterol mg/100g: 8

Sensory traits

- color: 12
- flavour: 7
- odor intensity: 7
- juiciness: 7
- hardness: 4

Marbling score: 9

L* – lightness, a* – redness, b* – yellowness, TBARS – thiobarbituric acid reactive substances, SE – standard error, RMSE – root mean square error; \(P < 0.05 \)
Effect of selenium supplementation on carcass and meat quality
and total Se content in the muscle

Comparing different Se forms, none of them affected colour, flavour, odour intensity or juiciness of meat (Table 5). Dietary inorganic Se treatment had significantly higher DP than control ($P < 0.05$), but did not differ from organic Se. The total Se content in the muscle after addition of organic Se was higher than in control ($P < 0.05$).

Discussion

Effect of Se supplementation on carcass characteristics. In the livestock industry, carcass yield is a crucial parameter. Therefore, some supplements and antioxidants would be more beneficial if they increased carcass production. Meta-analysis carried out in the present study revealed that HCW was influenced by Se levels. Se supplementation improved HCW due to a higher proportion of muscle tissue in individual ribs and fore shank (Table 2). Dressing and HCW were shown to be affected by different variables, including visceral organ mass (Silva et al., 2020). On the other hand, Mahmood et al. (2018) reported that the increases were due to a higher proportion of muscle tissue in HCW in the rack, loin, and leg regions. In this study, rack and leg parameters were numerically increased in animals given Se supplementation. Compared to control groups, high Se intake considerably increased the weight of loin, rack, flank, and fat tail due to the accumulation of Se intake, duration periods, and balance Se in rations (Mahmood et al., 2018).

Se plays a role in enhancing immunity, thus it also indirectly increases energy production required for growth. Specialized enzymes convert the Se source to selenocystathionin, which is degraded in the liver to generate selenide. Subsequently, selenide is utilized during the formation of selenocysteine.

Table 4. Influence of selenium supplementation (mg/kg) on animal performance

<table>
<thead>
<tr>
<th>Response parameter</th>
<th>Unit</th>
<th>N</th>
<th>Intercept</th>
<th>SE intercept</th>
<th>Slope</th>
<th>SE slope</th>
<th>P-value</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADG</td>
<td>kg/day</td>
<td>43</td>
<td>0.59</td>
<td>0.16</td>
<td>0.07</td>
<td>0.03</td>
<td>0.009</td>
<td>0.04</td>
</tr>
<tr>
<td>DMI</td>
<td>kg/day</td>
<td>30</td>
<td>5.59</td>
<td>1.68</td>
<td>0.12</td>
<td>0.04</td>
<td>0.003</td>
<td>0.14</td>
</tr>
<tr>
<td>Gain to feed ratio</td>
<td></td>
<td>30</td>
<td>0.10</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.540</td>
<td>0.01</td>
</tr>
</tbody>
</table>

ADG – average daily gain, DMI – dry matter intake, SE – standard error, RMSE – root mean square error; $P < 0.05$

Table 5. Influence of different type of selenium supplementation (mg/kg) on carcass characteristics, meat quality and total Se on meat

<table>
<thead>
<tr>
<th>Response parameter</th>
<th>Unit</th>
<th>N</th>
<th>Control</th>
<th>Inorganic</th>
<th>Organic</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>%</td>
<td>44</td>
<td>46.78a</td>
<td>48.10 b</td>
<td>47.36 ab</td>
<td>0.01</td>
</tr>
<tr>
<td>CL</td>
<td>cm</td>
<td>15</td>
<td>64.9</td>
<td>64.5</td>
<td>73.1</td>
<td>0.39</td>
</tr>
<tr>
<td>REA</td>
<td>cm²</td>
<td>10</td>
<td>44.8</td>
<td>45.7</td>
<td>45.3</td>
<td>0.78</td>
</tr>
<tr>
<td>Meat quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>color</td>
<td></td>
<td>12</td>
<td>7.09</td>
<td>7.24</td>
<td>7.59</td>
<td>0.68</td>
</tr>
<tr>
<td>flavour</td>
<td></td>
<td>7</td>
<td>8.35</td>
<td>7.80</td>
<td>8.06</td>
<td>0.37</td>
</tr>
<tr>
<td>odor intensity</td>
<td></td>
<td>7</td>
<td>8.17</td>
<td>8.25</td>
<td>7.84</td>
<td>0.94</td>
</tr>
<tr>
<td>juiciness</td>
<td></td>
<td>7</td>
<td>7.62</td>
<td>6.11</td>
<td>7.85</td>
<td>0.31</td>
</tr>
<tr>
<td>total Se</td>
<td>μg/kg</td>
<td>30</td>
<td>85.6a</td>
<td>139ab</td>
<td>186b</td>
<td>0.03</td>
</tr>
</tbody>
</table>

DP – dressing percentage, CL – carcass length, REA – rib eye area; ab – means within a row with different superscripts are significantly different at $P < 0.05$
was unlikely to affect carcass quality unless there was an obvious mineral deficiency that affected the growth rate. Se supplementation at 0.3 mg as sodium selenite did not exert a significant effect on HCW. The lack of effect of Se treatments on carcass characteristics could be attributed to the high proportion of the concentrate in the diet, which could have standardized the growth rate (Bezerra et al., 2020).

The present meta-analysis demonstrated that Se supplementation tended to increase DP. In general, a high DP is desirable as it indicates that a greater proportion of live weight (i.e., cost to producers) is converted into marketable yield (i.e., revenue) (Coyne et al., 2019). The increase in HCW directly affected DP of the supplemented groups (Aghwan et al., 2016). Moreover, the enhanced development of leg tissues in the Se-supplemented groups resulted in a significant increase in carcass dressing percentage (Hernandez-Calva et al., 2013). Organic Se may have increased the efficiency of protein deposition or water retention in tissues, which could explain the higher dressing percentage observed in treatments (Marković et al., 2018). On the contrary, Zhu et al. (2022) reported no significant differences in carcass weight and dressing percentage after Se supplementation (P > 0.05). Dietary Se addition at 0.3 mg as sodium selenite did not exert a significant effect on DP (Vignola et al., 2009). The effects of selenium supplementation in cattle vary depending on the physiological stage, selenium status of the animals, selenium form and its dose, and delivery methods (Mehdi and Dufrasne, 2016) nitrates, sulfates, calcium or hydrogen cyanide negatively influence the organism’s use of the selenium contained in the diet. The Se supplementation may reduce the incidence of metritis and ovarian cysts during the postpartum period. The increase in fertility when adding Se is attributed to the reduction of the embryonic death during the first month of gestation. A use of organic Se in feed would provide a better transfer of Se in calves relative to mineral Se supplementation. The addition of Se yeasts in the foodstuffs of cows significantly increases the Se content and the percentage of PUFA. On the other hand, dietary Se addition seemed to increase testicular weight. Higher weight of this organ could be attributed to gonadal growth, which could be associated with a lower sperm mortality and, consequently, improved spermatogenesis (Mahmood et al., 2018). Selenium has been shown to promote apoptosis, which eliminates mutant or damaged cells, and affects testosterone production (Liu et al., 2011).

Effects of Se supplementation on meat quality. Meat quality is a key part of the livestock industry and has a substantial impact on economic benefits. It may be necessary to increase human consumption of selenium, an essential element for human health, which is deficient in several regions of the world (Silva et al., 2020). Meat is a significant source of energy and nutrients, including high-quality proteins and minerals (selenium, iron, zinc, manganese) in the human diet (Ursachi et al., 2020). Selenium is a component of the body’s antioxidant defence, and dietary Se supplementation can effectively increase its concentration in the meat, thereby enhancing its functional value (Matics et al., 2017). Se-enriched meat also qualifies for a health claim, as a panel of the European Food Safety and Authority has determined a cause-and-effect relationship between Se consumption and the protection of DNA, proteins, and lipids from oxidative damage, as well as the maintenance of normal immune and thyroid function, and normal spermatogenesis (Haug et al., 2018) vitamin D$_3$ (+300%).

The meta-analysis demonstrated that dietary Se supplementation increased total Se in the muscle (P < 0.01). Vignola et al. (2009) reported a significant increase in muscle selenium content with increasing dietary Se levels. Compared to control meat Se content was higher in all Se supplementation treatments, regardless of its source (Bezerra et al., 2020). Se deposition generally increases in response to
The degree of lipid oxidation in meat was assessed using TBARS (thiobarbituric acid reactive substances), and expressed as malonaldehyde content per kg of meat. Malonaldehyde is one of the most important secondary oxidation products of polyunsaturated fatty acids. As a bifunctional aldehyde, malonaldehyde is highly reactive and can interact through cross-links with DNA and proteins, thereby causing chromosomal abnormalities and decreasing protein synthesis capacity (Silva et al., 2020). The keeping quality of meat was assessed by measuring TBARS values in post-slaughter meat (Calvo et al., 2017). In this study, TBARS values in meat were reduced, which indicated lipid peroxidation control and lower oxidative stress (Juniper et al., 2009; Jia et al., 2022). This finding was also similar to the results reported in previous studies (Bezerra et al., 2020; Silva et al., 2020; Jia et al., 2022). Additional Se supplementation showed a beneficial effect on the regulation of lipid peroxidation and improvement of meat keeping quality (Sushma et al., 2015). Supplementation with antioxidant (like Se and/or tocopherols) is particularly recommended when enriching the diets with oils (fish, rapeseed, castor, or cashew nut shell oils) containing pro-oxidative long-chain polyunsaturated fatty acids (Jaworska et al., 2016; Przybylski et al., 2017; Bezerra et al., 2020).

Meat quality, as indicated by meat colour, is essential to enhance the basic competitiveness of meat products and ensure consumer satisfaction (Jia et al., 2022; Xue et al., 2022). It was apparent that Se supplementation did not compromise colour characteristics and sensory traits (except tenderness) of ruminant meat, and this result was consistent with previous studies. Supplementation with various selenium levels and sources had no effect on meat colour characteristics (Vignola et al., 2009; Hernandez-Calva et al., 2013; Silva et al., 2020). Supplementation with selenium and vitamin E may have inhibited the development of metmyoglobin, thereby preserving the colour and meat quality (Maraba et al., 2018). Preventing ferrous myoglobin oxidation and promoting metmyoglobin reduction are critical to maintain colour stability. This could minimize the formation of \(\text{H}_2\text{O}_2 \), which in turn maintains meat colour stability by preventing ferrous iron oxidation (Liu et al., 2011).

Effects of Se supplementation on animal performance. In addition to carcass and meat quality, it is necessary to observe livestock performance to determine the effect of Se supplementation on animal growth. Generally, Se addition increased the animals’ daily DMI and ADG \((P < 0.01)\).
Since Se plays a role in increasing immunity, its addition apparently improves the efficiency of energy utilization for growth, as confirmed in the present meta-analysis. On the other hand, Se has been associated with thyroid function, and specifically with the activity of thyroid deiodinases, selenoenzymes that catalyse the activation of T3 from T4, which explains the beneficial effect of Se on growth (Matics et al., 2017). Previous studies reported that calves inoculated with Escherichia coli strain J-5 and fed Se-enriched hay at weaning had better antibody titres and higher total neutrophil antioxidant capacity; this led to reduced mortality and increased weight gain (Hall et al., 2013; Pecoraro et al., 2022). These results are consistent with previous studies reporting that Se supplementation in ruminant diets increased DMI and ADG (Netto et al., 2014; Mariezcurra-Berasain et al., 2022). In contrast, Vignola et al. (2009), Sushma et al. (2015), and Silva et al. (2020) reported that ADG and DMI values did not differ significantly between Se dietary treatments. However, weight gain in some of these aforementioned studies increased numerically. We hypothesise that these inconsistent results were due to: 1) the variable length of the Se addition period; and 2) different Se requirements of individual animal species. The positive effect of the inclusion of a nutraceutical mixture on growth performance depends on the adaptation process and duration of the fattening period (Grossi et al., 2021).

Conclusions

Irrespective of its chemical form, HCW and Se content in the muscle generally increased with the addition of selenium to the diet. Se supplementation reduced cooking loss and TBARS levels. The decrease in TBARS levels represented a positive effect of the control of lipid peroxidation to maintain meat quality. With regard to animal performance, Se supplementation improved daily DMI and weight gain by enhancing immunity. Moreover, the addition of Se exerted no effect on the sensory characteristics and proximate values of ruminant meat. According to our results, Se supplementation leads to Se enrichment of meat, thereby contributing to its high quality. This strategy is therefore able to improve the quality of ruminant meat. Further meta-analysis studies are needed to evaluate the carcass characteristics and meat quality of ruminants fed diets supplemented with (1) inorganic or (2) organic chemical forms of Se.

Acknowledgments

We would like to thank the Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Indonesia for providing a platform for collaboration between research fellows across various institutions. This research was also the result of collaboration between the Research Center for Food Technology and Processing, and the Research Center for Animal Husbandry, National Research and Innovation Agency of Indonesia.

Conflict of interest

The Authors declare that there is no conflict of interest.

References

