Re-evaluation of aflatoxin M₁ transfer into milk of high-yielding cows considering ration composition

H.-G. Walte¹,*, K. Knappstein¹, R. Maul¹ and P. Steinberg²

¹ Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Hermann-Weigmann-Straße, 124103 Kiel, Germany
² Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany

KEY WORDS: aflatoxin binder, aflatoxin M₁, concentrate, mycotoxin, ruminants, transfer rate

ABSTRACT. Aflatoxin M₁ (AFM₁) is a metabolite of aflatoxin B₁ (AFB₁) and can be detected in milk when AFB₁-contaminated feed is used. The European Commission (EC) has set maximum levels for AFM₁ at 0.050 µg/kg in milk and 0.025 µg/kg in infant formula and follow-on milk. Moreover, a maximum residue limit of 5 µg/kg AFB₁ in compound feed for dairy cattle has been established in the European Union, assuming transfer rates into milk of 2–3%. However, it has been published that transfer rates of approx. 6% may occur for high yielding cows (> 30 kg milk/day). A higher proportion of concentrates in the ration may ultimately result in a lower rumen pH or a shift in the rumen microbiome, thereby leading to changes in the rate of AFB₁ absorption. Therefore, re-evaluation of the AFM₁ transfer rate is of major importance to determine the acceptable AFB₁ intake levels from feed. The present study analysed the influence of feed composition on the transfer rate of AFB₁ to AFM₁ into milk. Cows were fed a daily low (7.5 kg) or high (12.5 kg) concentrate ration, and AFB₁ (50 µg/day) was administered orally once daily for 10 days. AFM₁ transfer rates ranged from 1.28 to 3.89%, but were not significantly influenced by the ration. Moreover, the addition of the aflatoxin binder Admonil between days 8 and 10 led to a strong reduction in AFM₁ concentrations in the milk of both groups. Based on the confirmed mean transmission rates of 2.3–2.5%, it can be concluded that the maximum limits for AFM₁ in milk (0.050 µg AFM₁/kg) according to Regulation (EC) 165/2010 will not be exceeded unless AFB₁ is introduced in feed in addition to the regulated concentrates.

Introduction

Food contaminants, such as aflatoxins, are substances that have not been intentionally added, but may be present in food as a result of contamination at various stages of its production. They can also result from environmental contamination. Not only food, but also feed may contain contaminants, for example, up to 204 µg/kg aflatoxin B₁ (AFB₁) was detected in a batch of 45 000 t of maize from Serbia which was already on the market, by the Lower Saxony State Office for Consumer Protection and Food Safety (LAVES) in Germany in 2013. These concentrations clearly exceeded the permissible maximum levels of 20 µg/kg in compound feed for cattle in the European Union. Furthermore, the maximum AFB₁ content in compound feed for dairy cattle is 5 µg/kg based on a dry matter content of 88% (European Commission Regulation, 574/2011).
while the maximum level of aflatoxin M$_1$ (AFM$_1$) in raw milk, heat-treated milk and milk for the manufacture of milk-based products is 0.050 µg/kg, and 0.025 µg/kg for infant milk and follow-on milk (European Commission, 165/2010). The German Contaminants Regulation (KmV, 2010) has further reduced the maximum level of AFM$_1$ for some dietary foods for babies or infants to 0.010 µg/kg. As a consequence of the incidence mentioned above, increased AFM$_1$ levels were detected in milk samples collected from dairy cattle fed with the contaminated maize. Moreover, approximately 1 000 farms had to suspend milk deliveries, and some had to discard milk until AFM$_1$ levels fell below the allowed maximum concentrations (LAVES, 2013).

Up to 6% of ingested AFB$_1$ can be transferred to AFM$_1$ in milk after metabolism in the liver of farm animals (Creppy, 2002). However, the transfer rate varies considerably among various animal species, depending on the season (Bognanno et al., 2006) and can even fluctuate between two successive milkings (Pittet, 1998). Nevertheless, it is assumed that there is a largely linear correlation between the intake of feed contaminated with AFB$_1$ and AFM$_1$ concentration in cow’s milk (Fink-Gremmels, 2008). The carcinogenic potency of AFM$_1$ is approximately ten times lower than that of AFB$_1$; but based on the available data, all aflatoxins (including AFB$_1$, AFB$_2$, AFG$_1$, AFG$_2$ and AFM$_1$) were classified as carcinogenic to humans (Group 1) by the International Agency for Research on Cancer (IARC, 2012).

Since it is well documented that regular (long-term) consumption of food contaminated with low amounts of aflatoxins may affect human health (IARC, 2012), all efforts should be focused on reducing aflatoxin contamination of food. In line with this consideration, exposure of dairy cattle to feed contaminated with aflatoxins must be minimized in order to decrease AFM$_1$ levels in cow’s milk as much as possible (Walte et al., 2016).

In the past, it has been reported that the transfer rate of aflatoxins in low-yielding dairy cows (< 30 kg milk/day) milked twice daily was about 1–2%, while in high-yielding dairy cows (> 30 kg milk/day), it was up to about 6% (Masoero et al., 2007; Fink-Gremmels, 2008; Britzi et al., 2013). A possible explanation for the strongly increased aflatoxin transfer rate with milk yield could be that high-yielding dairy cows are fed grain-rich diets. This in turn leads to a decrease in rumen pH (Kim et al., 2018), which can cause subacute ruminal acidosis (SARA) (Kleen and Cannizzo, 2012). The risk of developing SARA increases with a higher proportion of concentrates in the feed (Mensching et al., 2021). On the one hand, SARA may impair the barrier function of the gastrointestinal epithelium and result in a higher absorption of AFB$_1$ (Pantaya et al., 2016). On the other hand, rumen metabolism of AFB$_1$ may be altered due to SARA-associated changes in the composition of the rumen microbiota (Faniyi et al., 2019).

In Europe, low levels of AFM$_1$ contamination have been reported in milk, and only 0.06% of the analysed samples exceeded the European limit of 0.05 µg/kg milk (EFSA CONTAM Panel, 2004). Nevertheless, contamination of certain batches of feed can lead to widespread AFM$_1$ milk contamination, which should be taken into account and adequately controlled (van Asselt et al., 2017). In a long-term research project carried out in collaboration with the Milk Producer Association Schleswig-Holstein (Milcherzeugervereinigung Schleswig-Holstein e.V., Rendsburg, Germany), AFM$_1$ levels in bulk milk from road tankers from the northern part of Germany were analysed between 2010 and 2017. AFM$_1$ levels in 95% of the analysed milk samples (n = 33 550) were below the limit of quantification (LOQ) (0.005 µg/kg) of the used method and only 0.1% of the milk samples showed AFM$_1$ levels ≥ 0.010 µg/kg. Similar values were obtained by Blüthgen and Ubben (2000) in the same region a decade earlier. Bulk milk samples of high-yielding dairy cows (> 30 kg milk yield/day), measured by LAVES in 2013, contained up to 0.120 µg AFM$_1$/kg (LAVES, 2013); based on this fact, it was deduced that the aflatoxin transfer rate was significantly higher than the assumed 1–3%, i.e. the basis for meeting the legal requirements set by the European Commission (2010). In other words, if the aflatoxin transfer rate was about 6%, then the maximum permissible AFM$_1$ level in milk (0.050 µg/kg) would be exceeded even if the AFB$_1$ concentration in the feed was not higher than the allowable 5 µg/kg of AFB$_1$.

In order to further reduce the uptake of AFB$_1$ from feed by cows, the so-called binders, based on bentonite, activated carbon or other materials, have been developed (Diaz et al., 2004). These substances are mixed with the feed, and when ingested, prevent AFB$_1$ absorption from the gastrointestinal tract of animals. However, the efficiency varies for different types of feed and the type and amount of binder (Giovati et al., 2015).

Considering the above, a transfer study was conducted with the following objectives: 1) to determine whether the amount of concentrate in the feed influences the aflatoxin transfer rate and whether a high proportion of concentrate in the feed may
lead to an aflatoxin transfer rate higher than 2–3%;
2) to evaluate the effectiveness of the aflatoxin binder Admonil (bentonite-montmorillonite-based; Denkavit Internationaal, Voorthuizen, The Nether-
lands) in reducing the aflatoxin content in the milk of cows exposed to AFB1.

Material and methods

Animals and treatments

In order to determine the effect of ration composition on the rate of AFM, transfer into milk, a feeding
experiment was performed at the Schaedtbek experimental station of the Max Rubner-Institute using 10 German Holstein, black and white, high-yielding
dairy cows, with a herd productivity of 10 800 kg/year. The animal experiment was approved by the Ethics
Committee of the Ministry of Energy, Agriculture, the Environment and Rural Areas of Schleswig-Hol-
stein, Germany (reference number V244-3429/2016; 51-4/16), in accordance with the German Animal
Welfare Act (06/2014) and Directive 2010/63/EU on the protection of animals used for scientific purposes.

The rations differed in the proportion of concent-
trates as the sum of concentrate feed and cereals (Ta-
table 1) and were fed from the 14th day before the start
of the experiment to allow habituation. The feed com-
ponents available at the experimental station were
used to generate rations with a similar total composi-
tion, but maximum variation in the proportion of concent-
trates as the sum of concentrate feed and cereals (Ta-
table 1). The low concentrate (LC) group received
7.5 kg concentrate with a total amount of 22.5 kg dry
matter per day, and the high-concentrate (HC) group
was fed 12.5 kg concentrate with a total amount of
21.9 kg dry matter per day. The forage to concentrate
toations were 70:30 (LC) and 50:50 (HC) on dry matter
basis. Roughage was supplied ad libitum as a mixture
to both groups once daily. Concentrates were supplied
via a computer-controlled feeding station. Diets were
calculated for cows with a body weight of 650 kg and
a daily milk yield of 35 kg with 4% fat. Animals had
access to clean and fresh water 24 h per day.

Cows were milked in a tandem milking parlour
(GEA Farm Technologies, Bönen, Germany) twice
daily at 7 am and 5 pm, resulting in milking intervals
of 10 and 14 h. Milk was collected into a separate
milking bucket for each cow. Three main parameters
were used to detect any health abnormalities: milk
yield was recorded at every milking, concentrate in-
take was checked daily based on leftovers as a per-
centage of the allotted amount, and cow behaviour as
monitored daily.

To ensure intake of the intended AFB1 dose, a
gelatine capsule (length 66 mm, diameter 22 mm,
volume 45 ml; Science Services GmbH, Munich,
Germany) containing 50 µg AFB1 (Aflastandard
P22, R-Biopharm, Glasgow, UK) was adminis-
tered orally to each cow after morning milking for
10 days; for capsule preparation, AFB1 was diluted
in acetonitrile (gradient grade; Carl Roth, Karl-
sruhe, Germany), the solution was then added to
d g of ground dairy concentrate feed as adsorbent,
and the capsules were firmly sealed using a 1% cit-
ic acid solution. Gelatine capsules dissolved rapidly
(within minutes) in the rumen fluid, thus, AFB1, re-
lease occurred quickly and was comparable to its
take with the feed. At days 8–10 of AFB1 admin-
istration, the ration was supplemented with the
aflatoxin binder Admonil (bentonite-montmorillonite;
Denkavit Internationaal, Voort-huizen, The Nether-
lands), which was mixed into the rations at a dose of
150 g per cow per day, as specified by the manu-
ufacturer.

Table 1. Components of rations containing different proportions of concentrates (% DM)

<table>
<thead>
<tr>
<th>Item</th>
<th>LC group</th>
<th>HC group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredient, % of DM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grass silage, 1st cut</td>
<td>10.2</td>
<td>12.2</td>
</tr>
<tr>
<td>grass silage, 2nd cut</td>
<td>12.8</td>
<td>15.3</td>
</tr>
<tr>
<td>grass silage, 4th cut</td>
<td>13.2</td>
<td>0</td>
</tr>
<tr>
<td>maize silage</td>
<td>32.1</td>
<td>11.5</td>
</tr>
<tr>
<td>hay</td>
<td>–</td>
<td>9.8</td>
</tr>
<tr>
<td>straw (barley)</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>concentrate feed1</td>
<td>13.7</td>
<td>40.1</td>
</tr>
<tr>
<td>cereals mixture2</td>
<td>15.6</td>
<td>10.0</td>
</tr>
<tr>
<td>minerals, salt, bicarbonate3</td>
<td>1.2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Chemical composition

<table>
<thead>
<tr>
<th>Item</th>
<th>LC group</th>
<th>HC group</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM, % of DM</td>
<td>93.1</td>
<td>93.1</td>
</tr>
<tr>
<td>CP, % of DM</td>
<td>15.3</td>
<td>16.9</td>
</tr>
<tr>
<td>nXP, % of DM</td>
<td>15.3</td>
<td>16.3</td>
</tr>
<tr>
<td>XL, % of DM</td>
<td>3.4</td>
<td>2.3</td>
</tr>
<tr>
<td>starch, % of DM</td>
<td>13.5</td>
<td>6.3</td>
</tr>
<tr>
<td>sugar, % of DM</td>
<td>5.5</td>
<td>4.8</td>
</tr>
<tr>
<td>crude fibre, % of DM</td>
<td>16.6</td>
<td>13.1</td>
</tr>
<tr>
<td>sFibre, % of DM</td>
<td>11.8</td>
<td>10.2</td>
</tr>
<tr>
<td>ME, MJ/kg DM</td>
<td>9.84</td>
<td>10.08</td>
</tr>
<tr>
<td>NEL, MJ/kg DM</td>
<td>6.69</td>
<td>6.60</td>
</tr>
</tbody>
</table>

LC – low concentrates, HC – high concentrates, DM – dry matter,
OM – organic matter, CP – crude protein, nXP – utilisable protein
in the duodenum, XL – crude fat, sFibre – structural crude fibre,
ME – metabolisable energy, NEL – net energy for lactation; 1 HaGe
Primo 22/4, 22% crude protein content, energy level 4, 7 MJ NEL;
2 20% lupin seeds, 20% wheat grains, 60% rapeseed expeller;
3 20% salt, 20% bicarbonate, 60% minerals.
Milk and feed component sampling

Milk samples were collected from each cow at both milking times throughout the experiment, beginning 2 days before the start of supplementation (anamnesis), for 10 days of supplementation, and then followed by a 4-day phase without AFB, administration (wash-out period). All samples were analysed for aflatoxin M₁. After milking and thorough mixing of the composite milk, 100 ml of milk per cow were stored at 4 °C until analysis, and the remaining samples at −20 °C. The composition of the morning and evening milk of each cow was analysed twice during the experimental period by the LKV-Schleswig Holstein (Dairy Herd Improvement [DHI] samples) using infrared spectroscopy (protein, fat, lactose content) and flow cytometry (somatic cell count). Samples of all ration components, as well as the roughage mixture of both rations were tested by high-performance liquid chromatography with a photodiode array detector for AFB₁ (BVL, 2014) and no background contamination was detected.

AFM₁ quantification in milk

All morning and evening milking samples were analysed separately for AFM, using an in-house developed, competitive enzyme-linked immunosorbent assay (ELISA) method (Blüthgen and Ubben, 2000), which was validated in inter-laboratory tests. The limit of detection (LOD) was 0.003 μg/kg milk and the LOQ was 0.005 μg/kg with an uncertainty of 0.006 μg/kg at 0.010 μg/kg (k = 2).

Transfer rate calculation

The transfer rate was determined for days 2–7, when AFM₁ concentration in milk reached the steady state in our feeding experiment. The transfer rate was calculated as the percentage of administered AFB₁ (50 μg/cow/day) transferred as AFM₁ into milk, weighted by the milk yield from the morning and evening milking.

Statistical analyses

Statistical analysis of the transfer rate data was carried out using the statistical analysis package SAS (Version 9.4) and the implemented general linear model procedure, for which additive constants were included in the overall mean, taking into account the regression relationship to the covariate, resulting in the calculated least squares means with standard error of the means (LSM ± SEM). In this procedure, the Tukey test for multiple comparison of means was applied. Depending on the model, the factors “ration (HC/LC)”, “cow within ration” and “day of supplementation” were included as additive constants and “milk yield” as a covariate. The factors parity, days in milk (DIM) and body weight showed no significant effects in the model and were therefore not included. A probability of $P < 0.05$ was used to determine statistical significance.

Results

Cows were allocated to two groups of 5 cows each to achieve a similar distribution of parity, DIM, milk yield and body weight (Table 2).

<table>
<thead>
<tr>
<th>Cow no.</th>
<th>Age, months</th>
<th>Parity</th>
<th>DIM</th>
<th>Milk yield, kg/day</th>
<th>Body weight, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3263</td>
<td>72</td>
<td>4</td>
<td>215</td>
<td>34.1</td>
<td>751</td>
</tr>
<tr>
<td>3383</td>
<td>44</td>
<td>2</td>
<td>250</td>
<td>33.3</td>
<td>668</td>
</tr>
<tr>
<td>3429</td>
<td>32</td>
<td>1</td>
<td>218</td>
<td>33.6</td>
<td>613</td>
</tr>
<tr>
<td>3438</td>
<td>30</td>
<td>1</td>
<td>172</td>
<td>36.3</td>
<td>645</td>
</tr>
<tr>
<td>3447</td>
<td>28</td>
<td>1</td>
<td>101</td>
<td>37.7</td>
<td>641</td>
</tr>
<tr>
<td>Mean</td>
<td>41</td>
<td>1.8</td>
<td>191</td>
<td>35.0</td>
<td>664</td>
</tr>
<tr>
<td>SD</td>
<td>18</td>
<td>1.2</td>
<td>51</td>
<td>1.7</td>
<td>53</td>
</tr>
<tr>
<td>HC group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3360</td>
<td>50</td>
<td>2</td>
<td>317</td>
<td>37.0</td>
<td>688</td>
</tr>
<tr>
<td>3372</td>
<td>47</td>
<td>2</td>
<td>286</td>
<td>35.0</td>
<td>655</td>
</tr>
<tr>
<td>3432</td>
<td>32</td>
<td>1</td>
<td>230</td>
<td>34.0</td>
<td>677</td>
</tr>
<tr>
<td>3443</td>
<td>29</td>
<td>1</td>
<td>161</td>
<td>37.7</td>
<td>617</td>
</tr>
<tr>
<td>3446</td>
<td>28</td>
<td>1</td>
<td>130</td>
<td>34.6</td>
<td>642</td>
</tr>
<tr>
<td>Mean</td>
<td>34</td>
<td>1.4</td>
<td>225</td>
<td>35.7</td>
<td>656</td>
</tr>
<tr>
<td>SD</td>
<td>9</td>
<td>0.5</td>
<td>71</td>
<td>1.4</td>
<td>28</td>
</tr>
</tbody>
</table>

LC – low concentrates, HC – high concentrates, SD – standard deviation

There were no statistically significant differences regarding the four aforementioned parameters between the two groups before the start of the AFB₁ administration experiment. Moreover, as shown in Table 3, there were no statistically significant differences between both groups in milk yield, milk composition and somatic cell counts on day 7 of AFB₁ administration.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LC group</th>
<th>HC group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk yield, kg/day</td>
<td>31.8 ± 2.4</td>
<td>33.2 ± 2.0</td>
</tr>
<tr>
<td>Protein, %</td>
<td>3.51 ± 0.18</td>
<td>3.57 ± 0.42</td>
</tr>
<tr>
<td>Fat, %</td>
<td>3.79 ± 0.28</td>
<td>4.13 ± 0.37</td>
</tr>
<tr>
<td>Lactose, %</td>
<td>4.79 ± 0.06</td>
<td>4.77 ± 0.08</td>
</tr>
<tr>
<td>SCC (in 1000/ml)</td>
<td>54 ± 54</td>
<td>108 ± 80</td>
</tr>
</tbody>
</table>

AFB₁ – aflatoxin B₁, LC – low concentrates, HC – high concentrates, SCC – somatic cell count; data are presented as mean value ± SD; $P > 0.05$
AFM₁ concentration in the morning milk was approximately 50% lower compared to the evening milk, which was due to the fact that the daily AFB₁ bolus was administered in the morning after milking. Therefore, AFM₁ levels in the milk samples considered for further evaluation in this report are the mean daily values of AFM₁ concentrations measured in the morning and evening milk samples (Figure 1).

The concentration of AFM₁ in the milk samples between days 2 and 7 of AFB₁ administration, the period when steady AFM₁ levels were observed in milk, for each individual cow, as well as the mean AFM₁ concentrations in milk of the LC and HC group are shown in Table 4. The mean AFM₁ concentration in the milk was numerically higher in the HC group than in the LC group, but the difference in AFM₁ levels between the two groups was not statistically significant. The calculated mean AFM₁ concentration in milk during anamnesis was < LOD, and < LOQ during the clearance period (days 11–14) for both groups.

Figure 1 shows that the addition of the AFB₁ binder Admonil to the feed on days 8–10 of AFB₁ administration led to a strong reduction in AFM₁ concentration in milk of the cows of both groups (− 30%). Milk AFM₁ content at the end of the AFB₁ administration period reached the LOQ for AFM₁ in milk.

The AFM₁ transfer rates during the steady state period for each cow, as well as the mean AFM₁ transfer rates into the milk of the LC and HC group are shown in Table 5. The mean AFM₁ transfer rate to milk was numerically higher in the HC group (2.51 ± 0.06%)

Table 4. AFM₁ levels in milk of cows from the LC and HC groups between days 2 and 7 of AFB₁ administration (10⁻³ µg/kg)

<table>
<thead>
<tr>
<th>Day</th>
<th>LC group</th>
<th>HC group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cow 3263</td>
<td>cow 3383</td>
</tr>
<tr>
<td>2</td>
<td>19.66</td>
<td>35.98</td>
</tr>
<tr>
<td>3</td>
<td>18.82</td>
<td>41.36</td>
</tr>
<tr>
<td>4</td>
<td>20.85</td>
<td>43.03</td>
</tr>
<tr>
<td>5</td>
<td>20.88</td>
<td>35.84</td>
</tr>
<tr>
<td>6</td>
<td>20.95</td>
<td>47.34</td>
</tr>
<tr>
<td>7</td>
<td>21.20</td>
<td>50.43</td>
</tr>
</tbody>
</table>

AFM₁ – aflatoxin M₁, AFB₁ – aflatoxin B₁, LC – low concentrates, HC – high concentrates, LSM – least square means; SEM – standard error of the mean; ** – means within a row with different superscripts are significantly different at P < 0.05, significance test for individual cows within the group.
than in the LC group (2.33 ± 0.06%), but the difference in the AFM_i transfer rates between the two groups was not statistically significant, and the mean transfer rate for all 10 animals (i.e., two groups combined) was 2.42 ± 0.73% (Table 5). It should be noted that the mean transfer rates calculated for individual cows strongly varied, ranging from 1.28 ± 0.13% to 3.89 ± 0.12% (Table 5).

Discussion

In the present study, AFB_i was administered as a bolus once daily, and one might argue that this experimental design depicted an unrealistic “worst case scenario”. In practice, the intake of contaminated feed by cows may be more or less evenly distributed throughout the day. However, it is also well known that Aspergillus species that contaminate feeds can grow in nests, leading to AFB_i hot-spots (Vandicke et al., 2021). Consumption of feed containing such Aspergillus nests might in turn lead to high AFB_i uptake in a short period of time during the day and peak AFM_i concentrations in individual milk samples. Thus, the experimental design chosen for this study represented one of the realistic scenarios where cows could be contaminated with AFB_i through feed. Aflatoxin levels were found to be almost negligible in the samples of finished feed tested in 2009–2011 in Central Europe, whereas in North and South America, average amounts of 7 and 2 µg/kg were measured, respectively (Rodrigues and Naehrer, 2012). However, the variance between the individual samples analysed was high as in South America up to 83 µg/kg AFB_i and in southern Europe even 103 µg/kg were detected. Consequently, the amount of AFB_i in less than one kilogram of such contaminated finished feed would exceed the toxin content applied in the bolus capsule in the present study.

According to Masoero et al. (2007), milk yield is a major factor affecting the total excretion of AFM_i. In the current study, the difference in milk yield between the cow with the lowest and the cow with the highest calculated transfer rate was less than 5%. Based on the fact that milk yield did not vary strongly between individual animals, our data do not support the suggestion that milk yield is an important factor for AFM_i transfer, at least in cows producing approximately 30–35 kg milk/day. Moreover, Britzi et al. (2013) reported that the AFM_i transfer rates of six cows ranged from 3.0 ± 0.9% up to 11.9 ± 3.3% in the mid-lactation phase (8 to 20 weeks after calving) and from 1.6 ± 0.5% to 3.5 ± 0.8% in the late-lactation phase (>33 weeks after calving). In the present study, the cow showing the highest AFM_i transfer rate of almost 4.0% was in the late lactation phase (cow 3372; 41 weeks after calving), while all other cows except one were in an earlier lactation phase (14 to 35 weeks after calving); one animal with the lowest AFM_i transfer rate of about 1.3 (cow 3263) was at week 30 after calving. Thus, a correlation between the AFM_i transfer rate and lactation status cannot be derived from the present data.

Although not statistically significant, the mean AFM_i transfer rate into milk was numerically higher in the HC group than in the LC group. This tendency was consistent with a previous report showing that high-starch diets increased AFB_i bioavailability, most probably by lowering ruminal pH (Pantaya et al., 2016). It should be pointed out that, as shown in previous studies as well as in the present one, AFM_i transfer rates differ between animals. The reason for these interindividual differences remains unclear, but the composition of the rumen microbiota, as well as acidosis, age and lactation stage of the cow.
may play a role, and this issue should be analysed in future studies.

In the present study, the addition of the aflatoxin binder Admonil resulted in a significant decrease in AFM$_1$ concentrations in milk. This observation was in line with the results obtained by several other research groups, e.g. Kissell et al. (2013), who reported a AFM$_1$ level reduction up to 60% in milk after administration of bentonite to cows fed aflatoxin-contaminated diets.

Considering the calculated transfer rate of AFM$_1$ at 2.3–2.5% and the current AFB$_1$ contamination of the basic feed, it can be assumed that the maximum amount of 0.050 µg/kg in milk, as specified in Regulation of European Commission 165/2010, is not currently exceeded. In line with this statement, van Eijkeren et al. (2006) concluded in a previous study “that the European Union (EU) limit for AFB$_1$ in concentrate (5 µg AFB$_1$/kg) is adequate in preventing AFM$_1$ accumulation in milk exceeding the EU limit of 0.05 µg AFM$_1$/kg”.

Conclusions

The data presented in this study do not confirm that higher concentrate proportions in dairy cattle ration lead to increased transfer rates of AFM$_1$ into milk. Considering the AFM$_1$ transfer rate of 2.3 to 2.5% confirmed in this study, and the present level of AFB$_1$ contamination of the basic feed, it can currently be assumed that the maximum level of 0.050 µg AFM$_1$/kg milk specified in Regulation (EC) 165/2010 is not exceeded. As soon as other feed sources containing AFB$_1$ in addition to concentrates are consumed by dairy cattle, the compliance can no longer be taken for granted.
Acknowledgements

The authors would like to thank the following personnel of the Schädtbek experimental farm of the Max Rubner-Institut for their excellent technical assistance during the animal trial and for sampling: Karsten Hohmann, Joachim Kunze, Nicole Harder, Carolin Laaser, Klaus Lassen and Gabriele Schott. Furthermore, the excellent laboratory work of Heinz Braun and Sabine Holler-Niehus is highly appreciated.

Conflict of interest

The Authors declare that there is no conflict of interest.

References

Re-evaluation of aflatoxin M1 transfer into milk

