CC-BY 4.0

The expression profile of AQP1, AQP5 and AQP9 in granulosa and theca cells of porcine ovarian follicles during oestrous cycle and early pregnancy

D. Tanski 1,  
M. Eliszewski 2,  
A. Skowronska 3,  
S. Nielsen 4,  
University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Anatomy and Physiology, Oczapowskiego 1A, 10-719 Olsztyn
University of Warmia and Mazury in Olsztyn, Collegium Medicum, School of Medicine, Department of Gynecology and Obstetrics, Niepodległości 44, 10-045 Olsztyn
University of Warmia and Mazury in Olsztyn, Collegium Medicum, School of Medicine, Department of Human Physiology, Warszawska 30, 10-082 Olsztyn
Aalborg University, Faculty of Medicine, Department of Health Science and Technology, Aalborg 9220, Denmark
J. Anim. Feed Sci. 2018;27(1):26–35
Publish date: 2018-02-07
Aquaporins (AQP) are hydrophobic integral membrane channel proteins that facilitated water transport across the plasma membrane. In this study, the reverse transcription real-time polymerase chain reaction (Real-Time RT-PCR) assay was used to determine the expression of genes encoding AQP1, AQP5 and AQP9 in porcine ovarian follicles, separated theca and granulosa cells of six experimental groups: early-luteal (days 2–4), mid-luteal (days 10–12 of the cycle, coinciding with a period of full active corpora lutea corresponding to the activity of corpora lutea in the period of pregnancy), late-luteal (days 14–16 of the cycle, coinciding with a period of luteal regression and development of a new cohort of follicles) and follicular group (days 18–20) of the oestrous cycle, as well as early implantation (days 14–16) and post-implantation, placentation group (days 30–32) of gestation. Significant differences in the AQP1, AQP5 and AQP9 genes expression between studied groups appeared only in the separated theca and granulosa cells. In the present study it is implied that the AQP1, 5 and 9 participate in the formation of follicular fluid and follicular development. These three examined AQPs appear to act interdependently, thereby maintaining tissue homeostasis.
M. T. Skowronski   
University of Warmia and Mazury in Olsztyn, Faculty of Biology and Biotechnology, Department of Animal Anatomy and Physiology, Oczapowskiego 1A, 10-719 Olsztyn
1. Akins E.L., Morrissette M.C., 1968. Gross ovarian changes during estrous cycle of swine. Am. J. Vet. Res. 29, 1953–1957.
2. Basini G., Falasconi I., Bussolati S., Grolli S., Di Lecce R., Grasselli F., 2016. Swine granulosa cells show typical endothelial cell characteristics. Reprod. Sci. 23, 630–637, https://doi.org/10.1177/1933719115612130.
3. Binelli M., Murphy B.D., 2010. Coordinated regulation of follicle development by germ and somatic cells. Reprod. Fertil. Dev. 22, 1–12, https://doi.org/10.1071/RD09218.
4. Brañes M.C., Morales B., Ríos M., Villalón M.J., 2005. Regulation of the immunoexpression of aquaporin 9 by ovarian hormones in the rat oviductal epithelium. Am. J. Physiol. Cell Physiol. 288, C1048–C1057, https://doi.org/10.1152/ajpcell.00420.2003.
5. Canipari R., Cellini V., Cecconi S., 2012. The ovary feels fine when paracrine and autocrine networks cooperate with gonadotropins in the regulation of folliculogenesis. Curr. Pharm. Design 18, 245–255, https://doi.org/10.2174/138161212799040411.
6. Craig J., Orisaka M., Wang H., Orisaka S., Thompson W., Zhu C., Kotsuji F., Tsang B.K., 2007. Gonadotropin and intra-ovarian signals regulating follicle development and atresia: the delicate balance between life and death. Front. Biosci. 12, 3628–3639, https://doi.org/10.2741/2339.
7. Duda M., Burek M., Galas J., Kozioł K., Koziorowski M., Słomczyńska M., 2004. Immunohistochemical localization of androgen receptor and aromatase in the ovary of the pregnant pig. Reprod. Biol. 4, 289–298.
8. Dziekoński M., Żmijewska A., Franczak A., Kotwica G., Czelejewska W., Okrasa S., 2015. The expression of mRNAs for opioid precursors in endometrium of cyclic and early pregnant pigs; effects of IL-1β, IL-6 and TNFα. J. Anim. Feed Sci. 24, 118–126, https://doi.org/10.22358/jafs/65637/2015.
9. Ford P., Merot J., Jawerbaum A., Gimeno M.A.F., Capurro C., Parisi M., 2000. Water permeability in rat oocytes at different maturity stages: aquaporin-9 expression. J. Membr. Biol. 176, 151–158, https://doi.org/10.1007/s00232001084.
10. Grzesiak M., Knapczyk-Stwora K., Luck M.R., Mobasheri A., Slomczynska M., 2016. Effect of prenatal and neonatal antiandrogen flutamide treatment on aquaporin 5 expression in the adult porcine ovary. Reprod. Domest. Anim. 51, 105–113, https://doi.org/10.1111/rda.12652.
11. Grzesiak M., Williams L., Luck M.R., 2013. Testosterone influences water transport in porcine granulosa cells. Reprod. Domest. Anim. 48, e52–e54, https://doi.org/10.1111/rda.12161.
12. Guthrie H.D., Garrett W.M., 2001. Apoptosis during folliculogenesis in pigs. Reprod. Suppl. 58, 17–29.
13. Knapczyk K., Duda M., Durlej M., Galas J., Koziorowski M., Slomczynska M., 2008. Expression of estrogen receptor α (ERα) and estrogen receptor β (ERβ) in the ovarian follicles and corpora lutea of pregnant swine. Domest. Anim. Endocrinol. 35, 170–179, https://doi.org/10.1016/j.domaniend.2008.05.001.
14. Lee H.J., Jee B.C., Kim S.K., Kim H., Lee J.R., Suh C.S., Kim S.H., 2016. Expressions of aquaporin family in human luteinized granulosa cells and their correlations with IVF outcomes. Hum. Reprod. 31, 822–831, https://doi.org/10.1093/humrep/dew006.
15. Maleszka A., Smolinska N., Nitkiewicz A., Kiezun M., Chojnowska K., Dobrzyn K., Szwaczek H., Kaminski T., 2014. Adiponectin expression in the porcine ovary during the oestrous cycle and its effect on ovarian steroidogenesis. Int. J. Endocrinol. 2014, 957076, https://doi.org/10.1155/2014/957076.
16. Martyniak M., Zglejc K., Franczak A., Kotwica G., 2016. Expression of 3β-hydroxysteroid dehydrogenase and P450 aromatase in porcine oviduct during the oestrous cycle. J. Anim. Feed Sci. 25, 235–243, https://doi.org/10.22358/jafs/65557/2016.
17. McConnell N.A., Yunus R.S., Gross S.A., Bost K.L., Clemens M.G., Hughes F.M Jr., 2002. Water permeability of an ovarian antral follicle is predominantly transcellular and mediated by aquaporins. Endocrinology 143, 2905–2912, https://doi.org/10.1210/endo.143.8.8953.
18. Preston G.M., Agre P., 1991. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl. Acad. Sci. U. S. A. 88, 11110–11114, https://doi.org/10.1073/pnas.88.24.11110.
19. Qu F., Wang F.-F., Lu X.-E., Dong M.-Y., Sheng J.-Z., Lv P.-P., Ding G.-L., Shi B.-W., Zhang D., Huang H.-F., 2010. Altered aquaporin expression in women with polycystic ovary syndrome: hyperandrogenism in follicular fluid inhibits aquaporin-9 in granulosa cells through the phosphatidylinositol 3-kinase pathway. Hum. Reprod. 25, 1441–1450, https://doi.org/10.1093/humrep/deq078.
20. Rodgers R.J., Irving-Rodgers H.F., 2010. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 82(6):1021-9. https://doi.org/10.1095/biolreprod.109.082941.
21. Rodgers R.J., Irving-Rodgers H.F., van Wezel I.L., Krupa M., Lavranos T.C., 2001. Dynamics of the membrana granulosa during expansion of the ovarian follicular antrum. Mol. Cell. Endocrinol. 171, 41–48, https://doi.org/10.1016/S0303-7207(00)00430-5.
22. Sales A.D., Brito I.R., de Lima L.F., Lobo C.H., Duarte A.B.G., Souza C.E.A., Moura A.A., de Figueiredo J.R., Rodrigues A.P.R., 2014. Expression and localization of aquaporin 3 (AQP3) in folliculogenesis of ewes. Acta Histochem. 116, 831–837, https://doi.org/10.1016/j.acthis.2014.02.001.
23. Sales A.D., Duarte A.B.G., Rodrigues G.Q. et al., 2015. Steadystate level of messenger RNA and immunolocalization of aquaporins 3, 7, and 9 during in vitro growth of ovine preantral follicles. Theriogenology 84, 1–10, https://doi.org/10.1016/j.theriogenology.2015.01.005.
24. Sales A.D., Duarte A.B.G., Santos R.R. et al., 2016. Modulation of aquaporins 3 and 9 after exposure of ovine ovarian tissue to cryoprotectants followed by in vitro culture. Cell Tissue Res. 365, 415–424, https://doi.org/10.1007/s00441-016-2384-z.
25. Skowronski M.T., Kwon T.H., Nielsen S., 2009. Immunolocalization of aquaporin 1, 5, and 9 in the female pig reproductive system. J. Histochem. Cytochem. 57, 61–67, https://doi.org/10.1369/jhc.2008.952499.
26. Skowronska A., Mlotkowska P., Eliszewski M., Nielsen S., Skowronski M.T., 2015. Expression of aquaporin 1, 5 and 9 in the ovarian follicles of cycling and early pregnant pigs. Physiol. Res. 64, 237–245.
27. Starowicz A., Grzesiak M., Mobasheri A., Szoltys M., 2014. Immunolocalization of aquaporin 5 during rat ovarian follicle development and expansion of the preovulatory cumulus oophorus. Acta Histochem. 116, 457–465, https://doi.org/10.1016/j.acthis.2013.10.001.
28. Su W., Qiao Y., Yi F. et al., 2010. Increased female fertility in aquaporin 8-deficient mice. IUBMB Life 62, 852–857, https://doi.org/10.1002/iub.398.
29. Thoroddsen A., Dahm-Kähler P., Lind A.K., Weijdegård B., Lindenthal B., Müller J., Brännström M., 2011. The water permeability channels aquaporins 1–4 are differentially expressed in granulosa and theca cells of the preovulatory follicle during precise stages of human ovulation. J. Clin. Endocrinol. Metab. 96, 1021–1028, https://doi.org/10.1210/jc.2010-2545.
30. Tong D., Gittens J.E., Kidder G.M., Bai D., 2006. Patch-clamp study reveals that the importance of connexin43-mediated gap junctional communication for ovarian folliculogenesis is strain specific in the mouse. Am. J. Physiol. Cell Physiol. 290, C290–C297, https://doi.org/10.1152/ajpcell.00297.2005.
31. Vogel C., Marcotte E.M., 2013. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232, https://doi.org/10.1038/nrg3185.
32. West-Farrell E.R., Xu M., Gomberg M.A., Chow Y.H., Woodruff T.K., Shea L.D,. 2009. The mouse follicle microenvironment regulates antrum formation and steroid production: alterations in gene expression profiles. Biol. Reprod. 80, 432–439, https://doi.org/10.1095/biolreprod.108.071142.
33. Wiesak T., Hunter M.G., Foxcroft G.R., 1992. Ovarian follicular development during early pregnancy in the pig. Anim. Reprod. Sci. 29, 17–24, https://doi.org/10.1016/0378-4320(92)90016-7.
34. Zhang D., Tan Y.-J., Qu F., Sheng J.-Z., Huang H.-F., 2012. Functions of water channels in male and female reproductive systems. Mol. Asp. Med. 33, 676–690, https://doi.org/10.1016/j.mam.2012.02.002.