1. |
Barszcz M., Taciak M., Skomiał J., 2018. Influence of different inclusion levels and chain length of inulin on microbial ecology and the state of mucosal protective barrier in the large intestine of young pigs. Anim. Prod. Sci. 58, 1109–1118, https://doi.org/10.1071/AN1601....
|
2. |
Böhmer B.M., Branner G.R., Roth-Maier D.A., 2005. Precaecal and faecal digestibility of inulin (DP 10–12) or an inulin/Enterococcus faecium mix and effects on nutrient digestibility and microbial gut flora. J. Anim. Physiol. Anim. Nutr. 89, 388–396, https://doi.org/10.1111/j.1439....
|
3. |
Burrin D.G., Petersen Y., Stoll B., Sangild P., 2001. Glucagon-like peptide 2: a nutrient-responsive gut growth factor. J. Nutr. 131, 709–712, https://doi.org/10.1093/jn/131....
|
4. |
Herosimczyk A., Lepczyński A., Ożgo M., Barszcz M., Jaszczuk-Kubiak E., Pierzchała M., Tuśnio A., Skomiał J., 2017. Hepatic proteome changes induced by dietary supplementation with two levels of native chicory inulin in young pigs. Livest. Sci. 203, 54–62, https://doi.org/10.1016/j.livs....
|
5. |
Ilari A., Fiorillo A., Poser E., Lalioti V.S., Sundell G.N., Ivarsson Y., Genovese I., Colotti G., 2015. Structural basis of Sorcinmediated calcium-dependent signal transduction. Sci. Rep. 5, 16828, https://doi.org/10.1038/srep16....
|
6. |
Kien C.L., Blauwiekel R., Bunn J.Y., Jetton T.L., Frankel W.L., Holst J.J., 2007. Cecal infusion of butyrate increases intestinal cell proliferation in piglets J. Nutr. 137, 916–922, https://doi.org/10.1093/jn/137....
|
7. |
Kien C.L., Schmitz-Brown M., Solley T., Sun D., Frankel W.L., 2006. Increased colonic luminal synthesis of butyric acid is associated with lowered colonic cell proliferation in piglets. J. Nutr. 136, 64–69, https://doi.org/10.1093/jn/136....
|
8. |
Koliakos G., Hamidi Alamdari D., 2009. Measurement of the oxidantsantioxidants balance in liquids. United States Patent Application Publication No. US 2009/0123956 A1 (USA).
|
9. |
Konstantinov S.R., Poznanski E., Fuentes S., Akkermans A.D.L., Smidt H., de Vos W.M., 2006. Lactobacillus sobrius sp. nov., abundant in the intestine of weaning piglets. Int. J. Syst. Evol. Microbiol. 56, 29–32, https://doi.org/10.1099/ijs.0.....
|
10. |
Lepczyński A., Herosimczyk A., Barszcz M., Ożgo M., Taciak M., Skomiał J., 2016. Inulin-type fructans trigger changes in iron concentration and activity of bone metabolism biomarkers in blood plasma of growing pigs. J. Anim. Feed Sci. 25, 343–347, https://doi.org/10.22358/jafs/....
|
11. |
Lepczyński A., Herosimczyk A., Ożgo M., Marynowska M., Pawlikowska M., Barszcz M., Taciak M., Skomiał J., 2017. Dietary chicory root and chicory inulin trigger changes in energetic metabolism, stress prevention and cytoskeletal proteins in the liver of growing pigs – a proteomic study. J. Anim. Physiol. Anim. Nutr. 101, e225–e236, https://doi.org/10.1111/jpn.12....
|
12. |
Loh G., Eberhard M., Brunner R.M., Hennig U., Kuhla S., Kleessen B., Metges C.C., 2006. Inulin alters the intestinal microbiota and short-chain fatty acid concentrations in growing pigs regardless of their basal diet. J. Nutr. 136, 1198–1202, https://doi.org/10.1093/jn/136....
|
13. |
Mensink M.A., Frijlink H.W., van der Voort Maarschalk K., HinrichsW.L.J., 2015. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr. Polym. 130, 405–419, https://doi.org/10.1016/j.carb....
|
14. |
Mullen L., Hanschmann E.-M., Lillig C.H., Herzenberg L.A., Ghezzi P., 2015. Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal release through a novel mechanism of redoxdependent secretion. Mol. Med. 21, 98–108, https://doi.org/10.2119/molmed....
|
15. |
Niness K.R., 1999. Inulin and oligofructose: what are they? J. Nutr. 129, 1402S–1406S, https://doi.org/10.1093/jn/129....
|
16. |
Pasqualetti V., Altomare A., Guarino M.P.L., Locato V., Cocca S., Cimini S., Palma R., Alloni R., De Gara L., Cicala M., 2014. Antioxidant activity of inulin and its role in the prevention of human colonic muscle cell impairment induced by lipopolysaccharide mucosal exposure. PLoS ONE 9, e98031, https://doi.org/10.1371/journa....
|
17. |
Paßlack N., Al-samman M., Vahjen W., Männer K., Zentek J., 2012. Chain length of inulin affects its degradation and the microbiota in the gastrointestinal tract of weaned piglets after a shortterm dietary application. Livest. Sci. 149, 128–136, https://doi.org/10.1016/j.livs....
|
18. |
Patterson J.K., Yasuda K., Welch R.M., Miller D.D., Lei X.G., 2010. Supplemental dietary inulin of variable chain lengths alters intestinal bacterial populations in young pigs. J. Nutr. 140, 2158–2161, https://doi.org/10.3945/jn.110....
|
19. |
Pirman T., Ribeyre M.C., Mosoni L., Rémond D., Vrecl M., Salobir J., Patureau Mirand P., 2007. Dietary pectin stimulates protein metabolism in the digestive tract. Nutrition 23, 69–75, https://doi.org/10.1016/j.nut.....
|
20. |
Ramana K.V., Bhatnagar A., Srivastava S., Yadav U.C., Awasthi S., Awasthi Y.C., Srivastava S.K., 2006. Mitogenic responses of vascular smooth muscle cells to lipid peroxidation-derived aldehyde 4-hydroxy-trans-2-nonenal (HNE): role of aldose reductase-catalyzed reduction of the HNE-glutathione conjugates in regulating cell growth. J. Biol. Chem. 281, 17652–17660, https://doi.org/10.1074/jbc.M6....
|
21. |
Reddy A.B.M., Srivastava S.K., Ramana K.V., 2009. Anti-inflammatory effect of aldose reductase inhibition in murine polymicrobial sepsis. Cytokine 48, 170–176, https://doi.org/10.1016/j.cyto....
|
22. |
Ribet D., Cossart P., 2015. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 17, 173–183, https://doi.org/10.1016/j.mici....
|
23. |
Srivastava S.K., Yadav U.C.S., Reddy A.B.M. et al., 2011. Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem. Biol. Interact. 191, 330–338, https://doi.org/10.1016/j.cbi.....
|
24. |
Tappenden K.A., Albin D.M., Bartholome A.L., Mangian H.F., 2003. Glucagon-like peptide-2 and short-chain fatty acids: a new twist to an old story. J. Nutr. 133, 3717–3720, https://doi.org/10.1093/jn/133....
|
25. |
Tsukahara T., Iwasaki Y., Nakayama K., Ushida K., 2003. Stimulation of butyrate production in the large intestine of weaning piglets by dietary fructooligosaccharides and its influence on the histological variables of the large intestinal mucosa. J. Nutr. Sci. Vitaminol. (Tokyo) 49, 414–421, https://doi.org/10.3177/jnsv.4...
|
26. |
Wang K., Wu L.-y., Dou C.-z., Guan X., Wu H.-g., Liu H.-r., 2016. Research advance in intestinal mucosal barrier and pathogenesis of Crohn’s disease. Gastroenterol. Res. Pract. 2016, 9686238, https://doi.org/10.1155/2016/9....
|
27. |
Yasuda K., Maiorano R., Welch R.M., Miller D.D., Lei X.G., 2007. Cecum is the major degradation site of ingested inulin in young pigs. J. Nutr. 137, 2399–2404, https://doi.org/10.1093/jn/137....
|
28. |
Ye Y., Tang W.K., Zhang T., Xia D., 2017. A mighty “Protein Extractor” of the cell: structure and function of the p97/CDC48 ATPase. Front. Mol. Biosci. 4, 39, https://doi.org/10.3389/fmolb.....
|